Measurement of Cordgrass, Spartina alterniflora, Production in a Macrotidal Estuary, Bay of Fundy

Estuaries ◽  
1989 ◽  
Vol 12 (1) ◽  
pp. 27 ◽  
Author(s):  
Peter J. Cranford ◽  
Donald C. Gordon ◽  
Carl M. Jarvis
2020 ◽  
Vol 644 ◽  
pp. 33-45
Author(s):  
JM Hill ◽  
PS Petraitis ◽  
KL Heck

Salt marshes face chronic anthropogenic impacts such as relative sea level rise and eutrophication, as well as acute disturbances from tropical storms that can affect the productivity of these important communities. However, it is not well understood how marshes already subjected to eutrophication and sea level rise will respond to added effects of episodic storms such as hurricanes. We examined the interactive effects of nutrient addition, sea level rise, and a hurricane on the growth, biomass accumulation, and resilience of the saltmarsh cordgrass Spartina alterniflora in the Gulf of Mexico. In a microtidal marsh, we manipulated nutrient levels and submergence using marsh organs in which cordgrasses were planted at differing intertidal elevations and measured the impacts of Hurricane Isaac, which occurred during the experiment. Prior to the hurricane, grasses at intermediate and high elevations increased in abundance. After the hurricane, all treatments lost approximately 50% of their shoots, demonstrating that added nutrients and elevation did not provide resistance to hurricane disturbance. At the end of the experiment, only the highest elevations had been resilient to the hurricane, with increased above- and belowground growth. Added nutrients provided a modest increase in above- and belowground growth, but only at the highest elevations, suggesting that only elevation will enhance resilience to hurricane disturbance. These results empirically demonstrate that S. alterniflora in microtidal locations already subjected to submergence stress is less able to recover from storm disturbance and suggests we may be underestimating the loss of northern Gulf Coast marshes due to relative sea level rise.


1984 ◽  
Vol 16 (1-2) ◽  
pp. 281-295 ◽  
Author(s):  
Donald C Gordon

Large-scale tidal power development in the Bay of Fundy has been given serious consideration for over 60 years. There has been a long history of productive interaction between environmental scientists and engineers durinn the many feasibility studies undertaken. Up until recently, tidal power proposals were dropped on economic grounds. However, large-scale development in the upper reaches of the Bay of Fundy now appears to be economically viable and a pre-commitment design program is highly likely in the near future. A large number of basic scientific research studies have been and are being conducted by government and university scientists. Likely environmental impacts have been examined by scientists and engineers together in a preliminary fashion on several occasions. A full environmental assessment will be conducted before a final decision is made and the results will definately influence the outcome.


2021 ◽  
Vol 51 (1) ◽  
Author(s):  
Lou Van Guelpen ◽  
Claire Goodwin ◽  
Rebecca Milne ◽  
Gerhard Pohle ◽  
Simon Courtenay
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document