Fish Population Responses to Chronic and Acute Pollution: The Influence of Life History Strategies

Estuaries ◽  
1987 ◽  
Vol 10 (3) ◽  
pp. 267 ◽  
Author(s):  
W. E. Schaaf ◽  
D. S. Peters ◽  
D. S. Vaughan ◽  
L. Coston-Clements ◽  
C. W. Krouse
2017 ◽  
Vol 15 (2) ◽  
Author(s):  
Luis H. Escalera-Vázquez ◽  
Nancy Calderón-Cortés ◽  
Luis Zambrano-González

ABSTRACT Hydrological variation differently affects fish species. In the present study, the response of local populations of 13 fish local species to hydrological variation in a tropical wetland was evaluated. The objectives were to analyze the abundance response of fish species with distinct life history strategies and to assess the role of hydrological variation on fish population patterns. We found that opportunistic strategists were favored by high hydrological variation in drought periods, the equilibrium strategists were related to stable habitats, and periodic strategists were regulated by floods and temperature. However, the life history strategies identified for some species in this study do not correspond to the classification reported in other studies. Our results highlight the importance to study the abundance responses of species at local and regional scales to identify variations in life-history strategies, which can reflect local adaptations of species to hydrological changes, this is useful in order to understand and predict the responses of fish populations to the local environment.


2005 ◽  
Vol 62 (4) ◽  
pp. 886-902 ◽  
Author(s):  
Kenneth A Rose

Relationships between fish population responses to changes in their vital rates and commonly available life history traits would be a powerful screening tool to guide management about species vulnerability, to focus future data collection on species and life stages of concern, and to aid in designing effective habitat enhancements. As an extension of previous analyses by others, I analyzed the responses to changes in fecundity and yearling survival of age-structured matrix and individual-based population models of 17 populations comprising 10 species. Simulations of the matrix models showed that the magnitude of population responses, but not the relative order of species sensitivity, depended on the state (sustainable or undergoing excessive removals) of the population. Matrix and individual-based models predicted population responses that appeared to be unrelated to their species-level life history traits when responses were plotted on a three-end-point life history surface. Density-dependent adult growth was added to the lake trout (Salvelinus namaycush) matrix model, and simulations demonstrated the potential importance to predicted responses of density-dependent processes outside the usual spawner–recruit relationship. Four reasons for the lack of relationship between population responses and life history traits related to inadequate population models, incorrect analysis, inappropriate life history model, and important site-specific factors are discussed.


<em>Abstract</em>.—The flow regime is considered the primary driver of physical processes in riverine ecosystems; thus we expect that the trait composition of fish assemblages might respond similarly to hydrologic variability, even at broad spatial scales. Here, we test the hypothesis that freshwater fish life history strategies on two continents (southern United States and eastern Australia) converge along gradients of hydrologic variability and primary productivity at the drainage scale. Our results show that the fishes of the United States and Australia conform to the three-dimensional adaptive space arising from the trade-offs among three basic demographic parameters of survival, fecundity, and onset and duration of reproductive life. Species from both continents represent the endpoints in adaptive space defining the periodic (19% versus 33% for the United States and Australia, respectively), opportunistic (69% versus 52%), and equilibrium life history strategies (12% versus 15%). We found evidence that fish life history composition of drainage basins in the two continents have converged across similar gradients of hydrologic variability and productivity despite phylogenetic and historical differences. Moreover, these relationships were largely consistent with predictions from life history theory. Increasing hydrologic variability has promoted the greater prevalence of opportunistic strategists (a strategy that should maximize fitness in environmental settings dominated by unpredictable environmental change) while concurrently minimizing the persistence of periodic-type species (a strategy typically inhabits seasonal, periodically suitable environments). Our study provides a conceptual framework of management options for species in regulated rivers because life history strategies are the underlying determinants for population responses to environmental change and therefore can be used to classify typical population responses to flow alteration or mitigation via environmental flow prescriptions.


2020 ◽  
Vol 7 ◽  
Author(s):  
Isabel M. Smallegange ◽  
Marta Flotats Avilés ◽  
Kim Eustache

Understanding why different life history strategies respond differently to changes in environmental variability is necessary to be able to predict eco-evolutionary population responses to change. Marine megafauna display unusual combinations of life history traits. For example, rays, sharks and turtles are all long-lived, characteristic of slow life histories. However, turtles also have very high reproduction rates and juvenile mortality, characteristic of fast life histories. Sharks and rays, in contrast, produce a few live-born young, which have low mortality rates, characteristic of slow life histories. This raises the question if marine megafaunal responses to environmental variability follow conventional life history patterns, including the pattern that fast life histories are more sensitive to environmental autocorrelation than slow life histories. To answer this question, we used a functional trait approach to quantify for different species of mobulid rays, cheloniid sea turtles and carcharhinid sharks – all inhabitants or visitors of (human-dominated) coastalscapes – how their life history, average size and log stochastic population growth rate, log(λs), respond to changes in environmental autocorrelation and in the frequency of favorable environmental conditions. The faster life histories were more sensitive to temporal frequency of favourable environmental conditions, but both faster and slower life histories were equally sensitive, although of opposite sign, to environmental autocorrelation. These patterns are atypical, likely following from the unusual life history traits that the megafauna display, as responses were linked to variation in mortality, growth and reproduction rates. Our findings signify the importance of understanding how life history traits and population responses to environmental change are linked. Such understanding is a basis for accurate predictions of marine megafauna population responses to environmental perturbations like (over)fishing, and to shifts in the autocorrelation of environmental variables, ultimately contributing toward bending the curve on marine biodiversity loss.


2021 ◽  
Author(s):  
Jae Young Choi ◽  
Liliia R Abdulkina ◽  
Jun Yin ◽  
Inna B Chastukhina ◽  
John T Lovell ◽  
...  

Abstract Telomeres are highly repetitive DNA sequences found at the ends of chromosomes that protect the chromosomes from deterioration during cell division. Here, using whole genome re-sequencing and terminal restriction fragment assays, we found substantial natural intraspecific variation in telomere length in Arabidopsis thaliana, rice (Oryza sativa), and maize (Zea mays). Genome-wide association study (GWAS) mapping in A. thaliana identified 13 regions with GWAS-significant associations underlying telomere length variation, including a region that harbors the telomerase reverse transcriptase (TERT) gene. Population genomic analysis provided evidence for a selective sweep at the TERT region associated with longer telomeres. We found that telomere length is negatively correlated with flowering time variation not only in A. thaliana, but also in maize and rice, indicating a link between life history traits and chromosome integrity. Our results point to several possible reasons for this correlation, including the possibility that longer telomeres may be more adaptive in plants that have faster developmental rates (and therefore flower earlier). Our work suggests that chromosomal structure itself might be an adaptive trait associated with plant life history strategies.


2012 ◽  
Vol 26 (6) ◽  
pp. 1311-1329 ◽  
Author(s):  
Chiara Benvenuto ◽  
Sandrine Cheyppe-Buchmann ◽  
Gérald Bermond ◽  
Nicolas Ris ◽  
Xavier Fauvergue

2012 ◽  
Vol 182 (7) ◽  
pp. 947-959 ◽  
Author(s):  
Ismael Galván ◽  
Johannes Erritzøe ◽  
Filiz Karadaş ◽  
Anders P. Møller

2008 ◽  
Vol 18 (5) ◽  
pp. 363-367 ◽  
Author(s):  
Benoît Facon ◽  
Jean-Pierre Pointier ◽  
Philippe Jarne ◽  
Violette Sarda ◽  
Patrice David

Sign in / Sign up

Export Citation Format

Share Document