Temperature Effects on the Timing of Striped Bass Egg Production, Larval Viability, and Recruitment Potential in the Patuxent River (Chesapeake Bay)

Estuaries ◽  
1995 ◽  
Vol 18 (3) ◽  
pp. 527 ◽  
Author(s):  
David H. Secor ◽  
Edward D. Houde
2019 ◽  
Vol 77 (1) ◽  
pp. 300-314 ◽  
Author(s):  
N C Millette ◽  
J J Pierson ◽  
E W North

Abstract Striped bass (Morone saxatilis) are anadromous fish that support an important fishery along the east coast of North America. In Chesapeake Bay, strong juvenile recruitment of striped bass can occur when larvae overlap with high concentrations of their zooplankton prey, but the mechanisms fostering the temporal overlap are unknown. Here, the influence of winter temperature on the peak abundances of a key prey, Eurytemora carolleeae, was estimated with a temperature-dependent developmental model. The role of these peaks in regulating striped bass recruitment was explored in three nursery areas: upper Chesapeake Bay, Choptank River, and Patuxent River. Model results indicated that cold winters delay the timing and increase the size of peak E. carolleeae spring abundance. When the model output was used in regression relationships with striped bass juvenile recruitment and freshwater discharge, the regression models explained up to 78% of annual recruitment variability. Results suggests that cold, wet winters could increase the chance of a match between striped bass larvae and high concentrations of their prey. This mechanistic link between winter temperatures and striped bass production, acting through prey dynamics, could further understanding of fish recruitment variability and indicates that warmer winters could negatively affect some striped bass populations.


1976 ◽  
Vol 54 (4) ◽  
pp. 449-462 ◽  
Author(s):  
I. Paperna ◽  
D. E. Zwerner

Information on the distribution, life cycle, and seasonal abundance of the copepod Ergasilus labracis Krøyer, parasitic on the gills of lower Chesapeake Bay striped bass, Morone saxatilis (Walbaum), is presented after a 12-month survey. The overall prevalence of E. labracis was 90% in all localities sampled and it was found to be as euryhaline as its host; it has been found in salinities from 0.l‰ to 32.0‰. E. labracis was present and reproductively active throughout the year, suffering only a temporary slowdown in egg production at the beginning of the winter. Peak invasion of striped bass gills by infective larvae occurred during April and May; minor peaks were also recorded during July and October. The free-living stage was estimated to last as long as 6 weeks during early spring. Duration of other developmental stages was also extrapolated. Attempts to rear larvae in the laboratory past the metanauplius stage failed. Larvae could be kept for a maximum of 23 days after hatching if fed nannoplankton and kept at 20 °C in river water of 16–18‰.


1988 ◽  
Vol 20 (6-7) ◽  
pp. 39-48 ◽  
Author(s):  
David A. Wright

Copper and cadmium monitoring in Chesapeake Bay sediments indicates that metal contamination exists in nursery areas for striped bass (Moronesaxatilis), which has been in serious decline over the last 17 years. Whole water metal concentrations in one spawning river were within an order of magnitude of published acutely toxic concentrations. Larval striped bass were exposed in the laboratory to copper and cadmium concentrations which were acutely toxic over a 96h period (24 and 19 µg L−1, respectively), and to sub-lethal concentrations of these metals over a three week period. Larvae from acutely toxic metal treatments, sub-lethal metal concentrations and control tanks were analyzed for cadmium and copper and the frequency distribution of metal body burdens was compared with field data. The distribution of copper concentrations in laboratory-exposed larvae was completely within the range of field specimens, and there was considerable overlap in cadmium frequency distributions from laboratory and field larvae. These results together with other published data suggest that environmental metal concentrations in some spawning tributaries of the Chesapeake Bay may pose a threat to striped bass, and the suggestion is made that greater efforts should be made to link laboratory and field toxicological data.


1987 ◽  
Vol 16 (4) ◽  
pp. 391-400 ◽  
Author(s):  
Lenwood W. Hall ◽  
Alfred E. Pinkney ◽  
L. Herman ◽  
Susan E. Finger

Mycologia ◽  
1971 ◽  
Vol 63 (2) ◽  
pp. 237-260 ◽  
Author(s):  
Carol A. Shearer ◽  
J. L. Crane

Sign in / Sign up

Export Citation Format

Share Document