striped bass
Recently Published Documents


TOTAL DOCUMENTS

1448
(FIVE YEARS 86)

H-INDEX

61
(FIVE YEARS 5)

Author(s):  
Cynthia M. Le Doux-Bloom ◽  
Rebekah S. Lane ◽  
Grant J. Christian ◽  
Catherine A. Masatani ◽  
Jennifer E. Hemmert ◽  
...  

AbstractPurposely introduced in 1879, Pacific coast Striped Bass Morone saxatilis once supported a commercial fishery and currently supports a recreational fishery in the San Francisco Estuary Watershed, CA, USA; however, the population has been in decline for decades. Since little is known about sub-adult behavior on the Pacific coast, we used acoustic telemetry to investigate seasonal movement patterns and habitat use across three regions (bay, delta, and river) and the effects of temperature and salinity on habitat use over a 2-year period. Sub-adult movement and habitat use differed by year and age. In spring, age-I and age-II sub-adults moved within the delta (60%), river (20%), and bay (20%) regions, and by summer, some individuals moved to the bay (36%), while others remained in the delta (42%) and river (22%). Fall and winter showed equal movement between the bay and delta regions. During year 2, age-II and age-III fish inhabited the bay region across all seasons with the exception of spring when a few individuals migrated up river. Generally, sub-adults did not inhabit the river region in fall or winter. Sub-adults were not detected in water temperatures < 10 °C and occurred most often in 20–25 °C. Younger sub-adults inhabited limnetic habitat where older fish inhabited mesohaline and polyhaline habitats. Our findings suggest that sub-adult seasonal movement patterns and habitat use hotspots have important fishery management implications and can be useful to address concerns over how this non-native fish’s predation impacts native and endangered fishes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tamir Ofek ◽  
Maya Lalzar ◽  
Sivan Laviad-Shitrit ◽  
Ido Izhaki ◽  
Malka Halpern

Intensive freshwater aquaculture in the Spring Valley, Israel, is implemented mainly in earthen fishponds and reservoirs that are stocked with a variety of edible fish species. Here we sampled six different healthy fish species from these intensive aquacultures. The fish were hybrid striped bass, European bass, red drum (all carnivores), hybrid tilapia, flathead grey mullet (both herbivores), and common carp (an omnivore). Significant differences were found among the intestinal microbiota of the six studied fish species. The microbiota composition diversity was strongly related to the trophic level of the fish, such that there was a significant difference between the carnivore and the herbivore species, while the omnivore species was not significantly different from either group. The most abundant genus in the majority of the fishes’ intestinal microbiota was Cetobacterium. Furthermore, we found that beside Cetobacterium, a unique combination of taxa with relative abundance &gt;10% characterized the intestine microbiota of each fish species: unclassified Mycoplasmataceae, Aeromonas, and Vibrio (hybrid striped bass); Turicibacter and Clostridiaceae 1 (European bass); Vibrio (red drum); ZOR0006—Firmicutes (hybrid tilapia); unclassified Mycoplasmataceae and unclassified Vibrionaceae (flathead grey mullet); and Aeromonas (common carp). We conclude that each fish species has a specific bacterial genera combination that characterizes it. Moreover, diet and the trophic level of the fish have a major influence on the gut microbiota of healthy fish that grow in intensive freshwater aquaculture.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ryland B. Taylor ◽  
Martha E. Mather ◽  
Joseph M. Smith ◽  
Kayla M. Boles

Identifying patterns of organismal distribution can provide valuable insights for basic and applied marine and coastal ecology because understanding where animals are located is foundational to both research and science-based conservation. Understanding variation in distributional patterns can lead to a better assessment of ecological drivers and an improved ability to predict consequences of natural and altered relationships. Here, our purpose is to explore if quantifying coexisting groups of individual fish predators advances our understanding of field distribution patterns. Toward this end, we quantified locations of 59 acoustically tagged striped bass (Morone saxatilis) within a 26-stationary unit telemetry receiver array in Plum Island Estuary (PIE), MA, United States. We then used cluster analyses on spatial and temporal-spatial metrics from this dataset to (1) assess if distinct groups of individuals coexisted, (2) quantify group characteristics, and (3) test associations between groups and distribution (e.g., physical site type and region). Based on multiple lines of evidence, we identified four groups of striped bass with different space use patterns that persisted across seasons (summer and fall). Similar-sized striped bass clustered at spatial and temporal scales at which individuals within distinct groups could, and did, physically overlap. In addition, distributional groups were linked to components of physical site type and region suggesting that discrete groups of individuals can interact differently with the environment within the same ecological system. The identification of these distinct groups of individuals creates a baseline from which to explore further ecological implications of grouping behavior for research and conservation in geographically large, temporally dynamic, and spatially heterogeneous marine and coastal environments.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1678
Author(s):  
Kare A. Tonning ◽  
Suzanne M. Budge ◽  
Peter Tyedmers

Young-of-the-year (YOY) striped bass (Morone saxatilis) suffer significant mortality during their first winter. While causes of this mortality are unclear, lipids may play role in adapting to winter stresses, including thermal change and food scarcity. To address this, YOY striped bass were placed in mesh cages in freshwater ponds in the fall (November) and were held until the end of winter, in March. Liver and white muscle tissue were sampled at the beginning and end of the study to compare concentrations of specific lipid classes and fatty acid composition. Muscle-tissue total lipid and triacylglycerol (TAG) was higher in March (late winter) samples. Additionally, concentrations of phosphatidylethanolamine (PE) were higher in the white muscle of striped bass sampled in March; this was accompanied by a decrease in proportions of 18:0 and 22:6n-3 in PE (from ~11 to 7% and 36 to 28%, respectively) and 18:1n-9 and 22:6n-3 in phosphatidylcholine (from ~15 to 10% and 24 to 18%, respectively). This suggests that these fish were not utilizing energy reserves in previously described ways and appear to rely more on other lipid classes or body tissues for overwinter survival than those analyzed in this study.


Fisheries ◽  
2021 ◽  
Author(s):  
Robert Murphy ◽  
Steven Scyphers ◽  
Steven Gray ◽  
Jonathan H. Grabowski

2021 ◽  
pp. 91-105
Author(s):  
Conrado M. Gempesaw ◽  
Ferdinand F. Wirth ◽  
James Richard Bacon ◽  
Levsiri Munasinghe

Author(s):  
S. N. Andrews ◽  
D. H. Roth ◽  
K. A. Kidd ◽  
T. Linnansaari ◽  
R. A. Curry
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document