Real-Analytic Desingularization and Subanalytic Sets: An Elementary Approach

1990 ◽  
Vol 317 (2) ◽  
pp. 417 ◽  
Author(s):  
H. J. Sussmann

2019 ◽  
Vol 155 (4) ◽  
pp. 645-680 ◽  
Author(s):  
Armin Rainer

By an influential theorem of Boman, a function $f$ on an open set $U$ in $\mathbb{R}^{d}$ is smooth (${\mathcal{C}}^{\infty }$) if and only if it is arc-smooth, that is, $f\,\circ \,c$ is smooth for every smooth curve $c:\mathbb{R}\rightarrow U$. In this paper we investigate the validity of this result on closed sets. Our main focus is on sets which are the closure of their interior, so-called fat sets. We obtain an analogue of Boman’s theorem on fat closed sets with Hölder boundary and on fat closed subanalytic sets with the property that every boundary point has a basis of neighborhoods each of which intersects the interior in a connected set. If $X\subseteq \mathbb{R}^{d}$ is any such set and $f:X\rightarrow \mathbb{R}$ is arc-smooth, then $f$ extends to a smooth function defined on $\mathbb{R}^{d}$. We also get a version of the Bochnak–Siciak theorem on all closed fat subanalytic sets and all closed sets with Hölder boundary: if $f:X\rightarrow \mathbb{R}$ is the restriction of a smooth function on $\mathbb{R}^{d}$ which is real analytic along all real analytic curves in $X$, then $f$ extends to a holomorphic function on a neighborhood of $X$ in $\mathbb{C}^{d}$. Similar results hold for non-quasianalytic Denjoy–Carleman classes (of Roumieu type). We will also discuss sharpness and applications of these results.



Author(s):  
Siegfried Van Hille

Abstract We show that if $X$ is an $m$ -dimensional definable set in $\mathbb {R}_\text {an}^\text{pow}$ , the structure of real subanalytic sets with real power maps added, then for any positive integer $r$ there exists a $C^{r}$ -parameterization of $X$ consisting of $cr^{m^{3}}$ maps for some constant $c$ . Moreover, these maps are real analytic and this bound is uniform for a definable family.



2020 ◽  
pp. 112-118 ◽  
Author(s):  
Ricardo Estrada
Keyword(s):  



2020 ◽  
Vol 27 (2) ◽  
pp. 265-269
Author(s):  
Alexander Kharazishvili

AbstractIt is shown that any function acting from the real line {\mathbb{R}} into itself can be expressed as a pointwise limit of finite sums of periodic functions. At the same time, the real analytic function {x\rightarrow\exp(x^{2})} cannot be represented as a uniform limit of finite sums of periodic functions and, simultaneously, this function is a locally uniform limit of finite sums of periodic functions. The latter fact needs the techniques of Hamel bases.



2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Francesco Alessio ◽  
Glenn Barnich

Abstract The temperature inversion symmetry of the partition function of the electromagnetic field in the set-up of the Casimir effect is extended to full modular transformations by turning on a purely imaginary chemical potential for adapted spin angular momentum. The extended partition function is expressed in terms of a real analytic Eisenstein series. These results become transparent after explicitly showing equivalence of the partition functions for Maxwell’s theory between perfectly conducting parallel plates and for a massless scalar with periodic boundary conditions.



Author(s):  
Jimmy Tseng

AbstractWe produce an estimate for the K-Bessel function $$K_{r + i t}(y)$$ K r + i t ( y ) with positive, real argument y and of large complex order $$r+it$$ r + i t where r is bounded and $$t = y \sin \theta $$ t = y sin θ for a fixed parameter $$0\le \theta \le \pi /2$$ 0 ≤ θ ≤ π / 2 or $$t= y \cosh \mu $$ t = y cosh μ for a fixed parameter $$\mu >0$$ μ > 0 . In particular, we compute the dominant term of the asymptotic expansion of $$K_{r + i t}(y)$$ K r + i t ( y ) as $$y \rightarrow \infty $$ y → ∞ . When t and y are close (or equal), we also give a uniform estimate. As an application of these estimates, we give bounds on the weight-zero (real-analytic) Eisenstein series $$E_0^{(j)}(z, r+it)$$ E 0 ( j ) ( z , r + i t ) for each inequivalent cusp $$\kappa _j$$ κ j when $$1/2 \le r \le 3/2$$ 1 / 2 ≤ r ≤ 3 / 2 .



Sign in / Sign up

Export Citation Format

Share Document