Explicit A Priori Inequalities with Applications to Boundary Value Problems.

1978 ◽  
Vol 32 (142) ◽  
pp. 656 ◽  
Author(s):  
L. P. ◽  
V. G. Sigillito
2020 ◽  
Vol 53 (2) ◽  
pp. 159-180
Author(s):  
V. M. Kyrylych ◽  
O. Z. Slyusarchuk

Nonlocal boundary value problems for arbitrary order hyperbolic systems with one spatial variable are considered. A priori estimates for general nonlocal mixed problems for systems with smooth and piecewise smooth coefficients are obtained. The correct solvability of such problems is proved.Examples of additional conditions necessity are provided.


Author(s):  
Kazuaki Tanaka ◽  
Taisei Asai

AbstractThe purpose of this paper is to develop a unified a posteriori method for verifying the positivity of solutions of elliptic boundary value problems by assuming neither $$H^2$$ H 2 -regularity nor $$ L^{\infty } $$ L ∞ -error estimation, but only $$ H^1_0 $$ H 0 1 -error estimation. In (J Comput Appl Math 370:112647, 2020), we proposed two approaches to verify the positivity of solutions of several semilinear elliptic boundary value problems. However, some cases require $$ L^{\infty } $$ L ∞ -error estimation and, therefore, narrow applicability. In this paper, we extend one of the approaches and combine it with a priori error bounds for Laplacian eigenvalues to obtain a unified method that has wide application. We describe how to evaluate some constants required to verify the positivity of desired solutions. We apply our method to several problems, including those to which the previous method is not applicable.


Author(s):  
A. J. Pryde

AbstractWe consider general boundary value problems for homogeneous elliptic partial differential operators with constant coefficients. Under natural conditions on the operators, these problems give rise to isomorphisms between the appropriate spaces with homogeneous norms. We also consider operators which are not properly elliptic and boundary systems which do not satisfy the complementing condition and determine when they give rise to left or right invertible operators. A priori inequalities and regularity results for the corresponding boundary value problems in Sobolev spaces are then readily obtained.


2020 ◽  
Vol 28 (2) ◽  
pp. 75-98 ◽  
Author(s):  
Boniface Nkemzi ◽  
Michael Jung

AbstractIn [Nkemzi and Jung, 2013] explicit extraction formulas for the computation of the edge flux intensity functions for the Laplacian at axisymmetric edges are presented. The present paper proposes a new adaptation for the Fourier-finite-element method for efficient numerical treatment of boundary value problems for the Poisson equation in axisymmetric domains Ω̂ ⊂ ℝ3 with edges. The novelty of the method is the use of the explicit extraction formulas for the edge flux intensity functions to define a postprocessing procedure of the finite element solutions of the reduced boundary value problems on the two-dimensional meridian of Ω̂. A priori error estimates show that the postprocessing finite element strategy exhibits optimal rate of convergence on regular meshes. Numerical experiments that validate the theoretical results are presented.


Sign in / Sign up

Export Citation Format

Share Document