A set of axioms for logic

1944 ◽  
Vol 9 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Theodore Hailperin

One of the preeminent problems confronting logicians is that of constructing a system of logic which will be adequate for mathematics. By a system's being adequate for mathematics, we mean that all mathematical theorems in general use can be deduced within the system. Several distinct logical systems, all having this end in view, have been proposed. Among these perhaps the best known are the systems referred to as “Principia Mathematica” and “set theory.” In both of these systems (we refer to the revised and simplified versions) there is a nucleus of propositions which can be derived by using only the axioms and rules of the restricted predicate calculus. However, if anything like adequacy for mathematics is to be expected, additional primitives and axioms must be added to the restricted predicate calculus. It is in their treatment of the additional primitive ε, denoting class or set membership, that the above-mentioned systems differ.In addition to these two, a third and a stronger system has been proposed by W. V. Quine in his paper New foundations for mathematical logic. It is with this system of Quine's that our work is concerned and of which we now give a brief description.

2011 ◽  
Vol 21 (4) ◽  
pp. 671-677 ◽  
Author(s):  
GÉRARD HUET

This special issue of Mathematical Structures in Computer Science is devoted to the theme of ‘Interactive theorem proving and the formalisation of mathematics’.The formalisation of mathematics started at the turn of the 20th century when mathematical logic emerged from the work of Frege and his contemporaries with the invention of the formal notation for mathematical statements called predicate calculus. This notation allowed the formulation of abstract general statements over possibly infinite domains in a uniform way, and thus went well beyond propositional calculus, which goes back to Aristotle and only allowed tautologies over unquantified statements.


10.1142/12456 ◽  
2022 ◽  
Author(s):  
Douglas Cenzer ◽  
Jean Larson ◽  
Christopher Porter ◽  
Jindrich Zapletal

Author(s):  
John Stillwell

This chapter prepares the reader's mind for reverse mathematics. As its name suggests, reverse mathematics seeks not theorems but the right axioms to prove theorems already known. Reverse mathematics began as a technical field of mathematical logic, but its main ideas have precedents in the ancient field of geometry and the early twentieth-century field of set theory. In geometry, the parallel axiom is the right axiom to prove many theorems of Euclidean geometry, such as the Pythagorean theorem. Set theory offers a more modern example: base theory called ZF, a theorem that ZF cannot prove (the well-ordering theorem) and the “right axiom” for proving it—the axiom of choice. From these and similar examples one can guess at a base theory for analysis, and the “right axioms” for proving some of its well-known theorems.


1950 ◽  
Vol 15 (2) ◽  
pp. 103-112 ◽  
Author(s):  
Hao Wang

In mathematics, when we want to introduce classes which fulfill certain conditions, we usually prove beforehand that classes fulfilling such conditions do exist, and that such classes are uniquely determined by the conditions. The statements which state such unicity and existence of classes are in mathematical logic consequences of the principles of extensionality and class existence. In order to illustrate how these principles enable us to introduce classes into systems of mathematical logic, let us consider the manner in which Gödel introduces classes in his book on set theory.For instance, before introducing the definition of the non-ordered pair of two classesGödel puts down as its justification the following two axioms:By A4, for every two classesyandzthere exists at least one non-ordered pairwof them; and by A3,wis uniquely determined in A4.


Sign in / Sign up

Export Citation Format

Share Document