Replacement and collection in intuitionistic set theory

1985 ◽  
Vol 50 (2) ◽  
pp. 344-348 ◽  
Author(s):  
Nicolas D. Goodman

Intuitionistic Zermelo-Fraenkel set theory, which we call ZFI, was introduced by Friedman and Myhill in [3] in 1970. The idea was to have a theory with the same axioms as ordinary classical ZF, but with Heyting's predicate calculus HPC as the underlying logic. Since some classically equivalent statements are intuitionistically inequivalent, however, it was not always obvious which form of a classical axiom to take. For example, the usual formulation of the axiom of foundation had to be replaced with a principle of transfinite induction on the membership relation in order to avoid having excluded middle provable and thus making the logic classical. In [3] the replacement axiom is taken in its most common classical form:In the presence of the separation axiom,this is equivalent to the axiomIt is this schema Rep that we shall call the replacement axiom.Friedman and Myhill were able to show in [3] that ZFI has a number of desirable “constructive” properties, including the existence property for both numbers and sets. They were not able to determine, however, whether ZFI is proof-theoretically as strong as ZF. This is still open.Three years later, in [2], Friedman introduced a theory ZF− which is like ZFI except that the replacement axiom is changed to the classically equivalent collection axiom:He showed that ZF− is proof-theoretically of the same strength as ZF, and he asked whether ZF− is equivalent to ZFI.

1999 ◽  
Vol 64 (2) ◽  
pp. 486-488 ◽  
Author(s):  
John L. Bell

By Frege's Theorem is meant the result, implicit in Frege's Grundlagen, that, for any set E, if there exists a map υ from the power set of E to E satisfying the conditionthen E has a subset which is the domain of a model of Peano's axioms for the natural numbers. (This result is proved explicitly, using classical reasoning, in Section 3 of [1].) My purpose in this note is to strengthen this result in two directions: first, the premise will be weakened so as to require only that the map υ be defined on the family of (Kuratowski) finite subsets of the set E, and secondly, the argument will be constructive, i.e., will involve no use of the law of excluded middle. To be precise, we will prove, in constructive (or intuitionistic) set theory, the followingTheorem. Let υ be a map with domain a family of subsets of a set E to E satisfying the following conditions:(i) ø ϵdom(υ)(ii)∀U ϵdom(υ)∀x ϵ E − UU ∪ x ϵdom(υ)(iii)∀UV ϵdom(5) υ(U) = υ(V) ⇔ U ≈ V.Then we can define a subset N of E which is the domain of a model of Peano's axioms.


Author(s):  
Harvey M. Friedman ◽  
Andrej Ščedrov

Formal propositional logic describing the laws of constructive (intuitionistic) reasoning was first proposed in 1930 by Heyting. It is obtained from classical pro-positional calculus by deleting the Law of Excluded Middle, and it is usually referred to as Heyting's (intuitionistic) propositional calculus ([9], §§23, 19) (we write HPP in short). Formal logic involving predicates and quantifiers based on HPP is called Heyting's (intuitionistic) predicate calculus ([9], §§31, 19) (we write HPR in short).


2019 ◽  
Vol 25 (2) ◽  
pp. 208-212 ◽  
Author(s):  
JOUKO VÄÄNÄNEN

AbstractWe show that if $(M,{ \in _1},{ \in _2})$ satisfies the first-order Zermelo–Fraenkel axioms of set theory when the membership relation is ${ \in _1}$ and also when the membership relation is ${ \in _2}$, and in both cases the formulas are allowed to contain both ${ \in _1}$ and ${ \in _2}$, then $\left( {M, \in _1 } \right) \cong \left( {M, \in _2 } \right)$, and the isomorphism is definable in $(M,{ \in _1},{ \in _2})$. This extends Zermelo’s 1930 theorem in [6].


1965 ◽  
Vol 30 (3) ◽  
pp. 295-317 ◽  
Author(s):  
Gaisi Takeuti

Although Peano's arithmetic can be developed in set theories, it can also be developed independently. This is also true for the theory of ordinal numbers. The author formalized the theory of ordinal numbers in logical systems GLC (in [2]) and FLC (in [3]). These logical systems which contain the concept of ‘arbitrary predicates’ or ‘arbitrary functions’ are of higher order than the first order predicate calculus with equality. In this paper we shall develop the theory of ordinal numbers in the first order predicate calculus with equality as an extension of Peano's arithmetic. This theory will prove to be easy to manage and fairly powerful in the following sense: If A is a sentence of the theory of ordinal numbers, then A is a theorem of our system if and only if the natural translation of A in set theory is a theorem of Zermelo-Fraenkel set theory. It will be treated as a natural extension of Peano's arithmetic. The latter consists of axiom schemata of primitive recursive functions and mathematical induction, while the theory of ordinal numbers consists of axiom schemata of primitive recursive functions of ordinal numbers (cf. [5]), of transfinite induction, of replacement and of cardinals. The latter three axiom schemata can be considered as extensions of mathematical induction.In the theory of ordinal numbers thus developed, we shall construct a model of Zermelo-Fraenkel's set theory by following Gödel's construction in [1]. Our intention is as follows: We shall define a relation α ∈ β as a primitive recursive predicate, which corresponds to F′ α ε F′ β in [1]; Gödel defined the constructible model Δ using the primitive notion ε in the universe or, in other words, using the whole set theory.


1954 ◽  
Vol 19 (3) ◽  
pp. 180-182 ◽  
Author(s):  
W. V. Quine

Consider any interpreted theory Θ, formulated in the notation of quantification theory (or lower predicate calculus) with interpreted predicate letters. It will be proved that Θ is translatable into a theory, likewise formulated in the notation of quantification theory, in which there is only one predicate letter, and it a dyadic one.Let us assume a fragment of set theory, adequate to assure the existence, for all x and y without regard to logical type, of the set {x, y) whose members are x and y, and to assure the distinctness of x from {x, y} and {{x}}. ({x} is explained as {x, x}.) Let us construe the ordered pair x; y in Kuratowski's fashion, viz. as {{x}, {x, y}}, and then construe x;y;z as x;(y;z), and x;y;z;w as x;(y;z;w), and so on. Let us refer to w, w;w, w;w;w, etc. as 1w, 2w, 3w, etc.Suppose the predicates of Θ are ‘F1’, ‘F2’, …, finite or infinite in number, and respectively d1-adic, d2-adic, …. Now let Θ′ be a theory whose notation consists of that of quantification theory with just the single dyadic predicate ‘F’, interpreted thus:The universe of Θ′ is to comprise all objects of the universe of Θ and, in addition, {x, y) for every x and y in the universe of Θ′. (Of course the universe of Θ may happen already to comprise all this.)Now I shall show how the familiar notations ‘x = y’, ‘x = {y, z}’, etc., and ultimately the desired ‘’, ‘’, etc. themselves can all be defined within Θ′.


1973 ◽  
Vol 38 (2) ◽  
pp. 315-319 ◽  
Author(s):  
Harvey Friedman

Let ZF be the usual Zermelo-Fraenkel set theory formulated without identity, and with the collection axiom scheme. Let ZF−-extensionality be obtained from ZF by using intuitionistic logic instead of classical logic, and dropping the axiom of extensionality. We give a syntactic transformation of ZF into ZF−-extensionality.Let CPC, HPC respectively be classical, intuitionistic predicate calculus without identity, whose only homological symbol is ∈. We use the ~ ~-translation, a basic tool in the metatheory of intuitionistic systems, which is defined byThe two fundamental lemmas about this ~ ~ -translation we will use areFor proofs, see Kleene [3, Lemma 43a, Theorem 60d].This - would provide the desired syntactic transformation at least for ZF into ZF− with extensionality, if A− were provable in ZF− for each axiom A of ZF. Unfortunately, the ~ ~-translations of extensionality and power set appear not to be provable in ZF−. We therefore form an auxiliary classical theory S which has no extensionality and has a weakened power set axiom, and show in §2 that the ~ ~-translation of each axiom of Sis provable in ZF−-extensionality. §1 is devoted to the translation of ZF in S.


1973 ◽  
Vol 38 (3) ◽  
pp. 410-412
Author(s):  
John Lake

Ackermann's set theory A* is usually formulated in the first order predicate calculus with identity, ∈ for membership and V, an individual constant, for the class of all sets. We use small Greek letters to represent formulae which do not contain V and large Greek letters to represent any formulae. The axioms of A* are the universal closures ofwhere all free variables are shown in A4 and z does not occur in the Θ of A2.A+ is a generalisation of A* which Reinhardt introduced in [3] as an attempt to provide an elaboration of Ackermann's idea of “sharply delimited” collections. The language of A+ is that of A*'s augmented by a new constant V′, and its axioms are A1–A3, A5, V ⊆ V′ and the universal closure ofwhere all free variables are shown.Using a schema of indescribability, Reinhardt states in [3] that if ZF + ‘there exists a measurable cardinal’ is consistent then so is A+, and using [4] this result can be improved to a weaker large cardinal axiom. It seemed plausible that A+ was stronger than ZF, but our main result, which is contained in Theorem 5, shows that if ZF is consistent then so is A+, giving an improvement on the above results.


1999 ◽  
Vol 64 (4) ◽  
pp. 1552-1556 ◽  
Author(s):  
John L. Bell

Call a family of subsets of a set E inductive if and is closed under unions with disjoint singletons, that is, ifA Frege structure is a pair (E, ν) with ν a map to E whose domain dom(ν) is an inductive family of subsets of E such thatIn [2] it is shown in a constructive setting that each Frege structure determines a subset which is the domain of a model of Peano's axioms. In this note we establish, within the same constructive setting, three facts. First, we show that the least inductive family of subsets of a set E is precisely the family of decidable Kuratowski finite subsets of E. Secondly, we establish that the procedure presented in [2] can be reversed, that is, any set containing the domain of a model of Peano's axioms determines a map which turns the set into a minimal Frege structure: here by a minimal Frege structure is meant one in which dom(ν) is the least inductive family of subsets of E. And finally, we show that the procedures leading from minimal Frege structures to models of Peano's axioms and vice-versa are mutually inverse. It follows that the postulation of a (minimal) Frege structure is constructively equivalent to the postulation of a model of Peano's axioms.All arguments will be formulated within constructive (intuitionistic) set theory.


1975 ◽  
Vol 40 (2) ◽  
pp. 151-158 ◽  
Author(s):  
John Lake

Our results concern the natural models of Ackermann-type set theories, but they can also be viewed as results about the definability of ordinals in certain sets.Ackermann's set theory A was introduced in [1] and it is now formulated in the first order predicate calculus with identity, using ∈ for membership and an individual constant V for the class of all sets. We use the letters ϕ, χ, θ, and χ to stand for formulae which do not contain V and capital Greek letters to stand for any formulae. Then, the axioms of A* are the universal closures ofwhere all the free variables are shown in A4 and z does not occur in the Θ of A2. A is the theory A* − A5.Most of our notation is standard (for instance, α, β, γ, δ, κ, λ, ξ are variables ranging over ordinals) and, in general, we follow the notation of [7]. When x ⊆ Rα, we use Df(Rα, x) for the set of those elements of Rα which are definable in 〈Rα, ∈〉, using a first order ∈-formula and parameters from x.We refer the reader to [7] for an outline of the results which are known about A, but we shall summarise those facts which are frequently used in this paper.


1956 ◽  
Vol 21 (1) ◽  
pp. 36-48 ◽  
Author(s):  
R. O. Gandy

In part I of this paper it is shown that if the simple theory of types (with an axiom of infinity) is consistent, then so is the system obtained by adjoining axioms of extensionality; in part II a similar metatheorem for Gödel-Bernays set theory will be proved. The first of these results is of particular interest because type theory without the axioms of extensionality is fundamentally rather a simple system, and it should, I believe, be possible to prove that it is consistent.Let us consider — in some unspecified formal system — a typical expression of the axiom of extensionality; for example:where A(h) is a formula, and A(f), A(g) are the results of substituting in it the predicate variagles f, g for the free variable h. Evidently, if the system considered contains the predicate calculus, and if h occurs in A(h) only in parts of the form h(t) where t is a term which lies within the range of the quantifier (x), then 1.1 will be provable. But this will not be so in general; indeed, by introducing into the system an intensional predicate of predicates we can make 1.1 false. For example, Myhill introduces a constant S, where ‘Sϕψχω’ means that (the expression) ϕ is the result of substituting ψ for χ in ω.


Sign in / Sign up

Export Citation Format

Share Document