Reduction to a dyadic predicate

1954 ◽  
Vol 19 (3) ◽  
pp. 180-182 ◽  
Author(s):  
W. V. Quine

Consider any interpreted theory Θ, formulated in the notation of quantification theory (or lower predicate calculus) with interpreted predicate letters. It will be proved that Θ is translatable into a theory, likewise formulated in the notation of quantification theory, in which there is only one predicate letter, and it a dyadic one.Let us assume a fragment of set theory, adequate to assure the existence, for all x and y without regard to logical type, of the set {x, y) whose members are x and y, and to assure the distinctness of x from {x, y} and {{x}}. ({x} is explained as {x, x}.) Let us construe the ordered pair x; y in Kuratowski's fashion, viz. as {{x}, {x, y}}, and then construe x;y;z as x;(y;z), and x;y;z;w as x;(y;z;w), and so on. Let us refer to w, w;w, w;w;w, etc. as 1w, 2w, 3w, etc.Suppose the predicates of Θ are ‘F1’, ‘F2’, …, finite or infinite in number, and respectively d1-adic, d2-adic, …. Now let Θ′ be a theory whose notation consists of that of quantification theory with just the single dyadic predicate ‘F’, interpreted thus:The universe of Θ′ is to comprise all objects of the universe of Θ and, in addition, {x, y) for every x and y in the universe of Θ′. (Of course the universe of Θ may happen already to comprise all this.)Now I shall show how the familiar notations ‘x = y’, ‘x = {y, z}’, etc., and ultimately the desired ‘’, ‘’, etc. themselves can all be defined within Θ′.

1956 ◽  
Vol 21 (1) ◽  
pp. 56-59
Author(s):  
Alan Cobham

It has been shown by Quine that an interpreted theory Θ, formulated in the notation of quantification theory, is translatable into a theory Θ′ in which the only primitive predicate is a dyadic F. In establishing this result Quine takes for the universe of Θ′ a set which comprehends the universe of Θ and has the property that if x and y are members then so is {x, y}. For this fragmentary set theory the distinctness of x from {x, y} and {{x}} is assumed. It will be shown here that, if a pair of somewhat more stringent restrictions are assumed for the set theory, then there is a symmetric dyadic predicate G definable within Θ′, i.e., in terms of F alone, in terms of which F is in turn definable. It follows from this extended result that the theory Θ is translatable into a theory in which the only primitive predicate is symmetric and dyadic.


1953 ◽  
Vol 18 (2) ◽  
pp. 145-167 ◽  
Author(s):  
J. C. Shepherdson

In this third and last paper on inner models we consider some of the inherent limitations of the method of using inner models of the type defined in 1.2 for the proof of consistency results for the particular system of set theory under consideration. Roughly speaking this limitation may be described by saying that practically no further consistency results can be obtained by the construction of models satisfying the conditions of theorem 1.5, i.e., conditions 1.31, 1.32, 1.33, 1.51, viz.:This applies in particular to the ‘complete models’ defined in 1.4. Before going on to a precise statement of these limitations we shall consider now the theorem on which they depend. This is concerned with a particular type of complete model examples of which we call “proper complete models”; they are those complete models which are essentially interior to the universe, those whose classes are sets of the universe constituting a class thereof, i.e., those for which the following proposition is true:The main theorem of this paper is that the statement that there are no models of this kind can be expressed formally in the same way as the axioms A, B, C and furthermore it can be proved that if the axiom system A, B, C is consistent then so is the system consisting of axioms A, B, C, plus this new hypothesis that there exist no proper complete models. When combined with the axiom ‘V = L’ introduced by Gödel in (1) this new hypothesis yields a system in which any normal complete model which exists has for its universal class V, the universal class of the original system.


1973 ◽  
Vol 38 (2) ◽  
pp. 315-319 ◽  
Author(s):  
Harvey Friedman

Let ZF be the usual Zermelo-Fraenkel set theory formulated without identity, and with the collection axiom scheme. Let ZF−-extensionality be obtained from ZF by using intuitionistic logic instead of classical logic, and dropping the axiom of extensionality. We give a syntactic transformation of ZF into ZF−-extensionality.Let CPC, HPC respectively be classical, intuitionistic predicate calculus without identity, whose only homological symbol is ∈. We use the ~ ~-translation, a basic tool in the metatheory of intuitionistic systems, which is defined byThe two fundamental lemmas about this ~ ~ -translation we will use areFor proofs, see Kleene [3, Lemma 43a, Theorem 60d].This - would provide the desired syntactic transformation at least for ZF into ZF− with extensionality, if A− were provable in ZF− for each axiom A of ZF. Unfortunately, the ~ ~-translations of extensionality and power set appear not to be provable in ZF−. We therefore form an auxiliary classical theory S which has no extensionality and has a weakened power set axiom, and show in §2 that the ~ ~-translation of each axiom of Sis provable in ZF−-extensionality. §1 is devoted to the translation of ZF in S.


1973 ◽  
Vol 38 (3) ◽  
pp. 410-412
Author(s):  
John Lake

Ackermann's set theory A* is usually formulated in the first order predicate calculus with identity, ∈ for membership and V, an individual constant, for the class of all sets. We use small Greek letters to represent formulae which do not contain V and large Greek letters to represent any formulae. The axioms of A* are the universal closures ofwhere all free variables are shown in A4 and z does not occur in the Θ of A2.A+ is a generalisation of A* which Reinhardt introduced in [3] as an attempt to provide an elaboration of Ackermann's idea of “sharply delimited” collections. The language of A+ is that of A*'s augmented by a new constant V′, and its axioms are A1–A3, A5, V ⊆ V′ and the universal closure ofwhere all free variables are shown.Using a schema of indescribability, Reinhardt states in [3] that if ZF + ‘there exists a measurable cardinal’ is consistent then so is A+, and using [4] this result can be improved to a weaker large cardinal axiom. It seemed plausible that A+ was stronger than ZF, but our main result, which is contained in Theorem 5, shows that if ZF is consistent then so is A+, giving an improvement on the above results.


1975 ◽  
Vol 40 (2) ◽  
pp. 151-158 ◽  
Author(s):  
John Lake

Our results concern the natural models of Ackermann-type set theories, but they can also be viewed as results about the definability of ordinals in certain sets.Ackermann's set theory A was introduced in [1] and it is now formulated in the first order predicate calculus with identity, using ∈ for membership and an individual constant V for the class of all sets. We use the letters ϕ, χ, θ, and χ to stand for formulae which do not contain V and capital Greek letters to stand for any formulae. Then, the axioms of A* are the universal closures ofwhere all the free variables are shown in A4 and z does not occur in the Θ of A2. A is the theory A* − A5.Most of our notation is standard (for instance, α, β, γ, δ, κ, λ, ξ are variables ranging over ordinals) and, in general, we follow the notation of [7]. When x ⊆ Rα, we use Df(Rα, x) for the set of those elements of Rα which are definable in 〈Rα, ∈〉, using a first order ∈-formula and parameters from x.We refer the reader to [7] for an outline of the results which are known about A, but we shall summarise those facts which are frequently used in this paper.


1956 ◽  
Vol 21 (1) ◽  
pp. 36-48 ◽  
Author(s):  
R. O. Gandy

In part I of this paper it is shown that if the simple theory of types (with an axiom of infinity) is consistent, then so is the system obtained by adjoining axioms of extensionality; in part II a similar metatheorem for Gödel-Bernays set theory will be proved. The first of these results is of particular interest because type theory without the axioms of extensionality is fundamentally rather a simple system, and it should, I believe, be possible to prove that it is consistent.Let us consider — in some unspecified formal system — a typical expression of the axiom of extensionality; for example:where A(h) is a formula, and A(f), A(g) are the results of substituting in it the predicate variagles f, g for the free variable h. Evidently, if the system considered contains the predicate calculus, and if h occurs in A(h) only in parts of the form h(t) where t is a term which lies within the range of the quantifier (x), then 1.1 will be provable. But this will not be so in general; indeed, by introducing into the system an intensional predicate of predicates we can make 1.1 false. For example, Myhill introduces a constant S, where ‘Sϕψχω’ means that (the expression) ϕ is the result of substituting ψ for χ in ω.


1985 ◽  
Vol 50 (2) ◽  
pp. 344-348 ◽  
Author(s):  
Nicolas D. Goodman

Intuitionistic Zermelo-Fraenkel set theory, which we call ZFI, was introduced by Friedman and Myhill in [3] in 1970. The idea was to have a theory with the same axioms as ordinary classical ZF, but with Heyting's predicate calculus HPC as the underlying logic. Since some classically equivalent statements are intuitionistically inequivalent, however, it was not always obvious which form of a classical axiom to take. For example, the usual formulation of the axiom of foundation had to be replaced with a principle of transfinite induction on the membership relation in order to avoid having excluded middle provable and thus making the logic classical. In [3] the replacement axiom is taken in its most common classical form:In the presence of the separation axiom,this is equivalent to the axiomIt is this schema Rep that we shall call the replacement axiom.Friedman and Myhill were able to show in [3] that ZFI has a number of desirable “constructive” properties, including the existence property for both numbers and sets. They were not able to determine, however, whether ZFI is proof-theoretically as strong as ZF. This is still open.Three years later, in [2], Friedman introduced a theory ZF− which is like ZFI except that the replacement axiom is changed to the classically equivalent collection axiom:He showed that ZF− is proof-theoretically of the same strength as ZF, and he asked whether ZF− is equivalent to ZFI.


2017 ◽  
Vol 10 (1) ◽  
pp. 1-50 ◽  
Author(s):  
MAX WEISS

AbstractI present a reconstruction of the logical system of the Tractatus, which differs from classical logic in two ways. It includes an account of Wittgenstein’s “form-series” device, which suffices to express some effectively generated countably infinite disjunctions. And its attendant notion of structure is relativized to the fixed underlying universe of what is named.There follow three results. First, the class of concepts definable in the system is closed under finitary induction. Second, if the universe of objects is countably infinite, then the property of being a tautology is $\Pi _1^1$-complete. But third, it is only granted the assumption of countability that the class of tautologies is ${\Sigma _1}$-definable in set theory.Wittgenstein famously urges that logical relationships must show themselves in the structure of signs. He also urges that the size of the universe cannot be prejudged. The results of this paper indicate that there is no single way in which logical relationships could be held to make themselves manifest in signs, which does not prejudge the number of objects.


1991 ◽  
Vol 56 (2) ◽  
pp. 439-457 ◽  
Author(s):  
Kai Hauser

Indescribability is closely related to the reflection principles of Zermelo-Fränkel set theory. In this axiomatic setting the universe of all sets stratifies into a natural cumulative hierarchy (Vα: α ϵ On) such that any formula of the language for set theory that holds in the universe already holds in the restricted universe of all sets obtained by some stage.The axioms of ZF prove the existence of many ordinals α such that this reflection scheme holds in the world Vα. Hanf and Scott noticed that one arrives at a large cardinal notion if the reflecting formulas are allowed to contain second order free variables to which one assigns subsets of Vα. For a given collection Ω of formulas in the ϵ language of set theory with higher type variables and a unary predicate symbol they define an ordinal α to be Ω indescribable if for all sentences Φ in Ω and A ⊆ VαSince a sufficient coding apparatus is available, this definition is (for the classes of formulas that we are going to consider) equivalent to the one that one obtains by allowing finite sequences of relations over Vα, some of which are possibly k-ary. We will be interested mainly in certain standardized classes of formulas: Let (, respectively) denote the class of all formulas in the language introduced above whose prenex normal form has n alternating blocks of quantifiers of type m (i.e. (m + 1)th order) starting with ∃ (∀, respectively) and no quantifiers of type greater than m. In Hanf and Scott [1961] it is shown that in ZFC, indescribability is equivalent to inaccessibility and indescribability coincides with weak compactness.


1981 ◽  
Vol 46 (3) ◽  
pp. 649-652 ◽  
Author(s):  
W. V. Quine

Quantification theory, or first-order predicate logic, can be formulated in terms purely of predicate letters and a few predicate functors which attach to predicates to form further predicates. Apart from the predicate letters, which are schematic, there are no variables. On this score the plan is reminiscent of the combinatory logic of Schönfinkel and Curry. Theirs, however, had the whole of higher set theory as its domain; the present scheme stays within the bounds of predicate logic.In 1960 I published an apparatus to this effect, and an improved version in 1971. In both versions I assumed two inversion functors, major and minor; also a cropping functor and the obvious complement functor. The effects of these functors, when applied to an n-place predicate, are as follows:The variables here are explanatory only and no part of the final notation. Ultimately the predicate letters need exponents showing the number of places, but I omit them in these pages.A further functor-to continue now with the 1971 version-was padding:Finally there was a zero-place predicate functor, which is to say simply a constant predicate, namely the predicate ‘I’ of identity, and there was a two-place predicate functor ‘∩’ of intersection. The intersection ‘F ∩ G’ received a generalized interpretation, allowing ‘F’ and ‘G’ to be predicates with unlike numbers of places. However, Steven T. Kuhn has lately shown me that the generalization is unnecessary and reducible to the homogeneous case.


Sign in / Sign up

Export Citation Format

Share Document