Characterization of recursively enumerable sets

1972 ◽  
Vol 37 (3) ◽  
pp. 507-511 ◽  
Author(s):  
Jesse B. Wright

AbstractLet N, O and S denote the set of nonnegative integers, the graph of the constant 0 function and the graph of the successor function respectively. For sets P, Q, R ⊆ N2 operations of transposition, composition, and bracketing are defined as follows: P∪ = {〈x, y〉 ∣ 〈y, x〉 ∈ P}, PQ = {〈x, z〉 ∣ ∃y〈x, y〉 ∈ P & 〈y, z〉 ∈ Q}, and [P, Q, R] = ⋃n ∈ M(Pn Q Rn).Theorem. The class of recursively enumerable subsets of N2 is the smallest class of sets with O and S as members and closed under transposition, composition, and bracketing.This result is derived from a characterization by Julia Robinson of the class of general recursive functions of one variable in terms of function composition and “definition by general recursion.” A key step in the proof is to show that if a function F is defined by general recursion from functions A, M, P and R then F = [P∪, A∪M, R].The above definitions of the transposition, composition, and bracketing operations on subsets of N2 can be generalized to subsets of X2 for an arbitrary set X. In this abstract setting it is possible to show that the bracket operation can be defined in terms of K, L, transposition, composition, intersection, and reflexive transitive closure where K: X → X and L: X → X are functions for decoding pairs.

1971 ◽  
Vol 36 (2) ◽  
pp. 193-215 ◽  
Author(s):  
Manuel Lerman

In [5], we studied the relational systems /Ā obtained from the recursive functions of one variable by identifying two such functions if they are equal for all but finitely many х ∈ Ā, where Ā is an r-cohesive set. The relational systems /Ā with addition and multiplication defined pointwise on them, were once thought to be potential candidates for nonstandard models of arithmetic. This, however, turned out not to be the case, as was shown by Feferman, Scott, and Tennenbaum [1]. We showed, letting A and B be r-maximal sets, and letting denote the complement of X, that /Ā and are elementarily equivalent (/Ā ≡ ) if there are r-maximal supersets C and D of A and B respectively such that C and D have the same many-one degree (C =mD). In fact, if A and B are maximal sets, /Ā ≡ if, and only if, A =mB. We wish to study the relationship between the elementary equivalence of /Ā and , and the Turing degrees of A and B.


1969 ◽  
Vol 34 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Louise Hay

Let q0, q1,… be a standard enumeration of all partial recursive functions of one variable. For each i, let wi = range qi and for any recursively enumerable (r.e.) set α, let θα = {n | wn = α}. If A is a class of r.e. sets, let θA = the index set of A = {n | wn ∈ A}. It is the purpose of this paper to classify the possible recursive isomorphism types of index sets of finite classes of r.e. sets. The main theorem will also provide an answer to the question left open in [2] concerning the possible double isomorphism types of pairs (θα, θβ) where α ⊂ β.


1967 ◽  
Vol 32 (2) ◽  
pp. 162-172 ◽  
Author(s):  
Robert W. Robinson

In §1 is given a characterization of strongly hypersimple sets in terms of weak arrays which is in appearance more restrictive than the original definition. §1 also includes a new characterization of hyperhypersimple sets. This one is interesting because in §2 a characterization of dense simple sets is shown which is identical in all but the use of strong arrays instead of weak arrays. Another characterization of hyperhypersimple sets, in terms of descending sequences of sets, is given in §3. Also a theorem showing strongly contrasting behavior for simple sets is presented. In §4 a r-maximal set which is not contained in any maximal set is constructed.


1973 ◽  
Vol 38 (4) ◽  
pp. 579-593 ◽  
Author(s):  
M. Blum ◽  
I. Marques

An important goal of complexity theory, as we see it, is to characterize those partial recursive functions and recursively enumerable sets having some given complexity properties, and to do so in terms which do not involve the notion of complexity.As a contribution to this goal, we provide characterizations of the effectively speedable, speedable and levelable [2] sets in purely recursive theoretic terms. We introduce the notion of subcreativeness and show that every program for computing a partial recursive function f can be effectively speeded up on infinitely many integers if and only if the graph of f is subcreative.In addition, in order to cast some light on the concepts of effectively speedable, speedable and levelable sets we show that all maximal sets are levelable (and hence speedable) but not effectively speedable and we exhibit a set which is not levelable in a very strong sense but yet is effectively speedable.


1996 ◽  
Vol 61 (3) ◽  
pp. 880-905 ◽  
Author(s):  
Klaus Ambos-Spies ◽  
Peter A. Fejer ◽  
Steffen Lempp ◽  
Manuel Lerman

AbstractWe give a decision procedure for the ∀∃-theory of the weak truth-table (wtt) degrees of the recursively enumerable sets. The key to this decision procedure is a characterization of the finite lattices which can be embedded into the r.e.wtt-degrees by a map which preserves the least and greatest elements: a finite lattice has such an embedding if and only if it is distributive and the ideal generated by its cappable elements and the filter generated by its cuppable elements are disjoint.We formulate general criteria that allow one to conclude that a distributive upper semi-lattice has a decidable two-quantifier theory. These criteria are applied not only to the weak truth-table degrees of the recursively enumerable sets but also to various substructures of the polynomial many-one (pm) degrees of the recursive sets. These applications to thepmdegrees require no new complexity-theoretic results. The fact that thepm-degrees of the recursive sets have a decidable two-quantifier theory answers a question raised by Shore and Slaman in [21].


1975 ◽  
Vol 40 (4) ◽  
pp. 529-540 ◽  
Author(s):  
Ivan Marques

In this paper we present two theorems concerning relationships between degrees of unsolvability of recursively enumerable sets and their complexity properties.The first theorem asserts that there are nonspeedable recursively enumerable sets in every recursively enumerable Turing degree. This theorem disproves the conjecture that all Turing complete sets are speedable, which arose from the fact that a rather inclusive subclass of the Turing complete sets, namely, the subcreative sets, consists solely of effectively speedable sets [2]. Furthermore, the natural construction to produce a nonspeedable set seems to lower the degree of the resulting set.The second theorem says that every speedable set has jump strictly above the jump of the recursive sets. This theorem is an expected one in view of the fact that all sets which are known to be speedable jump to the double jump of the recursive sets [4].After this paper was written, R. Soare [8] found a very useful characterization of the speedable sets which greatly facilitated the proofs of the results presented here. In addition his characterization implies that an r.e. degree a contains a speed-able set iff a′ > 0′.


Sign in / Sign up

Export Citation Format

Share Document