On complexity properties of recursively enumerable sets

1973 ◽  
Vol 38 (4) ◽  
pp. 579-593 ◽  
Author(s):  
M. Blum ◽  
I. Marques

An important goal of complexity theory, as we see it, is to characterize those partial recursive functions and recursively enumerable sets having some given complexity properties, and to do so in terms which do not involve the notion of complexity.As a contribution to this goal, we provide characterizations of the effectively speedable, speedable and levelable [2] sets in purely recursive theoretic terms. We introduce the notion of subcreativeness and show that every program for computing a partial recursive function f can be effectively speeded up on infinitely many integers if and only if the graph of f is subcreative.In addition, in order to cast some light on the concepts of effectively speedable, speedable and levelable sets we show that all maximal sets are levelable (and hence speedable) but not effectively speedable and we exhibit a set which is not levelable in a very strong sense but yet is effectively speedable.

1969 ◽  
Vol 34 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Louise Hay

Let q0, q1,… be a standard enumeration of all partial recursive functions of one variable. For each i, let wi = range qi and for any recursively enumerable (r.e.) set α, let θα = {n | wn = α}. If A is a class of r.e. sets, let θA = the index set of A = {n | wn ∈ A}. It is the purpose of this paper to classify the possible recursive isomorphism types of index sets of finite classes of r.e. sets. The main theorem will also provide an answer to the question left open in [2] concerning the possible double isomorphism types of pairs (θα, θβ) where α ⊂ β.


1971 ◽  
Vol 36 (2) ◽  
pp. 271-287 ◽  
Author(s):  
Donald A. Alton

Let W0, W1 … be one of the usual enumerations of recursively enumerable (r.e.) subsets of the set N of nonnegative integers. (Background information will be given later.) Suggestions of Anil Nerode led to the followingDefinitions. Let B be a subset of N and let ψ be a partial recursive function.


1984 ◽  
Vol 49 (1) ◽  
pp. 9-21 ◽  
Author(s):  
Robert E. Byerly

In [1] two interesting invariance notions were introduced: the notions of a set of godel numbers being invariant to automorphisms of the structures (ω, ·) and (ω, E) respectively. Here, · and E are defined by n · m ≃ φn (m) and nEm if and only if n Є Wm, where {φn} and {Wn} are acceptable enumerations of the partial recursive functions and r.e. sets respectively. In this paper we continue the study of the invariant sets, and especially the invariant r.e. sets, of gödel numbers.We start off with an easy result which characterizes the Turing degrees containing invariant sets. We then take a closer look at r.e. sets invariant with respect to automorphisms of (ω,E). Using the characterization [1, Theorem 4.2] of such sets, we will derive a somewhat different characterization (which was stated, but not proved, in [1, Proposition 4.4]) and, using it as a tool for constructing invariant sets, prove that the r.e. sets invariant with respect to automorphisms of (ω, E) cannot be effectively enumerated.We will next discuss representations of r.e. sets invariant with respect to automorphisms of (ω, ·). Although these sets do not have as nice a characterization as the r.e. sets invariant with respect to automorphisms of (ω, E) do, the techniques of [1] can still profitably be used to investigate their structure. In particular, if f is a partial recursive function whose graph is invariant with respect to automorphisms of (ω, ·), then for every a in the domain of f, there is a term t(a) built up from a and · only such that f(a) ≃ t(a). This is an analog to [1, Corollary 4.3]. We will also prove an analog to a result mentioned in the previous paragraph: the r.e. sets invariant with respect to automorphisms of (ω, ·) cannot be effectively enumerated.


1982 ◽  
Vol 47 (1) ◽  
pp. 48-66 ◽  
Author(s):  
Robert E. Byerly

AbstractA set of gödel numbers is invariant if it is closed under automorphisms of (ω, ·), where ω is the set of all gödel numbers of partial recursive functions and · is application (i.e., n · m ≃ φn(m)). The invariant arithmetic sets are investigated, and the invariant recursively enumerable sets and partial recursive functions are partially characterized.


1971 ◽  
Vol 36 (2) ◽  
pp. 193-215 ◽  
Author(s):  
Manuel Lerman

In [5], we studied the relational systems /Ā obtained from the recursive functions of one variable by identifying two such functions if they are equal for all but finitely many х ∈ Ā, where Ā is an r-cohesive set. The relational systems /Ā with addition and multiplication defined pointwise on them, were once thought to be potential candidates for nonstandard models of arithmetic. This, however, turned out not to be the case, as was shown by Feferman, Scott, and Tennenbaum [1]. We showed, letting A and B be r-maximal sets, and letting denote the complement of X, that /Ā and are elementarily equivalent (/Ā ≡ ) if there are r-maximal supersets C and D of A and B respectively such that C and D have the same many-one degree (C =mD). In fact, if A and B are maximal sets, /Ā ≡ if, and only if, A =mB. We wish to study the relationship between the elementary equivalence of /Ā and , and the Turing degrees of A and B.


1989 ◽  
Vol 54 (2) ◽  
pp. 522-526 ◽  
Author(s):  
James S. Royer

Smullyan in [Smu61] identified the recursion theoretic essence of incompleteness results such as Gödel's first incompleteness theorem and Rosser's theorem. Smullyan (improving upon [Kle50] and [Kle52]) showed that, for sufficiently complex theories, the collection of provable formulae and the collection of refutable formulae are effectively inseparable—where formulae and their Gödel numbers are identified. This paper gives a similar treatment for proof speed-up. We say that a formal system S1is speedable over another system S0on a set of formulaeAiff, for each recursive functionh, there is a formulaαinAsuch that the length of the shortest proof ofαin S0is larger thanhof the shortest proof ofαin S1. (Here we equate the length of a proof with something like the number of characters making it up,notits number of lines.) We characterize speedability in terms of the inseparability by r.e. sets of the collection of formulae which are provable in S1but unprovable in S0from the collectionA–where again formulae and their Gödel numbers are identified. We provide precise definitions of proof length, speedability and r.e. inseparability below.We follow the terminology and notation of [Rog87] with borrowings from [Soa87]. Below,ϕis an acceptable numbering of the partial recursive functions [Rog87] andΦa (Blum) complexity measure associated withϕ[Blu67], [DW83].


1958 ◽  
Vol 23 (3) ◽  
pp. 331-341 ◽  
Author(s):  
Hartley Rogers

In § 1 we present conceptual material concerning the notion of a Gödel numbering of the partial recursive functions. § 2 presents a theorem about these concepts. § 3 gives several applications. The material in § 1 and § 2 grew out of attempts by the author to find routine solutions to some of the problems discussed in § 3. The author wishes to acknowledge his debt in § 2 to the fruitful methods of Myhill in [M] and to thank the referee for an abbreviated and improved version of the proof for Lemma 3 in § 2.In the literature of mathematical logic, “Gödel numbering” usually means an effective correspondence between integers and the well-formed formulas of some logical calculus. In recursive function theory, certain such associations between the non-negative integers and instructions for computing partial recursive functions have been fundamental. In the present paper we shall be concerned only with numberings of the latter, more special, sort. By numbers and integers we shall mean non-negative integers. Our notation is, in general, that of [K]. If ϕ and ψ are two partial functions, ϕ = ψ shall mean that (∀x)[ϕ(x)≃(ψx)], i.e., that ϕ and ψ are defined for the same arguments and are equal on those arguments. We consider partial recursive functions of one variable; applications of the paper to the case of several variables, or to the case of all partial recursive functions in any number of variables, can be made in the usual way using the coordinate functions (a)i of [K, p. 230]. It will furthermore be observed that we consider only concepts that are invariant with respect to general recursive functions; more limited notions of Gödel numbering, taking into account, say, primitive recursive structure, are beyond the scope of the present paper.


1985 ◽  
Vol 50 (1) ◽  
pp. 138-148 ◽  
Author(s):  
Wolfgang Maass

In this paper we answer the question of whether all low sets with the splitting property are promptly simple. Further we try to make the role of lowness properties and prompt simplicity in the construction of automorphisms of the lattice of r.e. (recursively enumerable) sets more perspicuous. It turns out that two new properties of r.e. sets, which are dual to each other, are essential in this context: the prompt and the low shrinking property.In an earlier paper [4] we had shown (using Soare's automorphism construction [10] and [12]) that all r.e. generic sets are automorphic in the lattice ℰ of r.e. sets under inclusion. We called a set A promptly simple if Ā is infinite and there is a recursive enumeration of A and the r.e. sets (We)e∈N such that if We is infinite then there is some element (or equivalently: infinitely many elements) x of We such that x gets into A “promptly” after its appearance in We (i.e. for some fixed total recursive function f we have x ∈ Af(s), where s is the stage at which x entered We). Prompt simplicity in combination with lowness turned out to capture those properties of r.e. generic sets that were used in the mentioned automorphism result. In a following paper with Shore and Stob [7] we studied an ℰ-definable consequence of prompt simplicity: the splitting property.


1972 ◽  
Vol 37 (3) ◽  
pp. 507-511 ◽  
Author(s):  
Jesse B. Wright

AbstractLet N, O and S denote the set of nonnegative integers, the graph of the constant 0 function and the graph of the successor function respectively. For sets P, Q, R ⊆ N2 operations of transposition, composition, and bracketing are defined as follows: P∪ = {〈x, y〉 ∣ 〈y, x〉 ∈ P}, PQ = {〈x, z〉 ∣ ∃y〈x, y〉 ∈ P & 〈y, z〉 ∈ Q}, and [P, Q, R] = ⋃n ∈ M(Pn Q Rn).Theorem. The class of recursively enumerable subsets of N2 is the smallest class of sets with O and S as members and closed under transposition, composition, and bracketing.This result is derived from a characterization by Julia Robinson of the class of general recursive functions of one variable in terms of function composition and “definition by general recursion.” A key step in the proof is to show that if a function F is defined by general recursion from functions A, M, P and R then F = [P∪, A∪M, R].The above definitions of the transposition, composition, and bracketing operations on subsets of N2 can be generalized to subsets of X2 for an arbitrary set X. In this abstract setting it is possible to show that the bracket operation can be defined in terms of K, L, transposition, composition, intersection, and reflexive transitive closure where K: X → X and L: X → X are functions for decoding pairs.


Sign in / Sign up

Export Citation Format

Share Document