Effective aspects of profinite groups

1981 ◽  
Vol 46 (4) ◽  
pp. 851-863 ◽  
Author(s):  
Rick L. Smith

Profinite groups are Galois groups. The effective study of infinite Galois groups was initiated by Metakides and Nerode [8] and further developed by LaRoche [5]. In this paper we study profinite groups without considering Galois extensions of fields. The Artin method of representing a finite group as a Galois group has been generalized (effectively!) by Waterhouse [14] to profinite groups. Thus, there is no loss of relevance in our approach.The fundamental notions of a co-r.e. profinite group, recursively profinite group, and the degree of a co-r.e. profinite group are defined in §1. In this section we prove that every co-r.e. profinite group can be effectively represented as an inverse limit of finite groups. The degree invariant is shown to behave very well with respect to open subgroups and quotients. The work done in this section is basic to the rest of the paper.The commutator subgroup, the Frattini subgroup, thep-Sylow subgroups, and the center of a profinite group are essential in the study of profinite groups. It is only natural to ask if these subgroups are effective. The following question exemplifies our approach to this problem: Is the center a co-r.e. profinite group? Theorem 2 provides a general method for answering this type of question negatively. Examples 3,4 and 5 are all applications of this theorem.

1973 ◽  
Vol 16 (3) ◽  
pp. 405-415
Author(s):  
Gerard Elie Cohen

An inverse limit of finite groups has been called in the literature a pro-finite group and we have extensive studies of profinite groups from the cohomological point of view by J. P. Serre. The general theory of non-abelian modules has not yet been developed and therefore we consider a generalization of profinite abelian groups. We study inverse systems of discrete finite length R-modules. Profinite modules are inverse limits of discrete finite length R-modules with the inverse limit topology.


2016 ◽  
Vol 26 (05) ◽  
pp. 973-983 ◽  
Author(s):  
E. I. Khukhro ◽  
P. Shumyatsky

Let [Formula: see text] be an element of a group [Formula: see text]. For a positive integer [Formula: see text], let [Formula: see text] be the subgroup generated by all commutators [Formula: see text] over [Formula: see text], where [Formula: see text] is repeated [Formula: see text] times. We prove that if [Formula: see text] is a profinite group such that for every [Formula: see text] there is [Formula: see text] such that [Formula: see text] is finite, then [Formula: see text] has a finite normal subgroup [Formula: see text] such that [Formula: see text] is locally nilpotent. The proof uses the Wilson–Zelmanov theorem saying that Engel profinite groups are locally nilpotent. In the case of a finite group [Formula: see text], we prove that if, for some [Formula: see text], [Formula: see text] for all [Formula: see text], then the order of the nilpotent residual [Formula: see text] is bounded in terms of [Formula: see text].


1968 ◽  
Vol 11 (3) ◽  
pp. 371-374 ◽  
Author(s):  
C.Y. Tang

In [1] Gaschütz has shown that a finite group G splits over an abelian normal subgroup N if its Frattini subgroup ϕ(G) intersects N trivially. When N is a non-abelian nilpotent normal subgroup of G the condition ϕ(G)∩ N = 1 cannot be satisfied: for if N is non-abelian then the commutator subgroup C(N) of N is non-trivial. Now N is nilpotent, whence 1 ≠ C(N)⊂ϕ(N). Since G is a finite group, therefore, by (3, theorem 7.3.17) ϕ⊂ϕ(G). It follows that ϕ(G) ∩ N ≠ 1. Thus the condition ϕ(G) ∩ N = 1 must be modified. In §1 we shall derive some similar type of conditions for G to split over N when the restriction of N being an abelian normal subgroup is removed. In § 2 we shall give a characterization of splitting extensions of N in which every subgroup splits over its intersection with N.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1147
Author(s):  
Jiao Wang ◽  
Xiuyun Guo

Given a positive integer n, a finite group G is called quasi-core-n if ⟨ x ⟩ / ⟨ x ⟩ G has order at most n for any element x in G, where ⟨ x ⟩ G is the normal core of ⟨ x ⟩ in G. In this paper, we investigate the structure of finite quasi-core-p p-groups. We prove that if the nilpotency class of a quasi-core-p p-group is p + m , then the exponent of its commutator subgroup cannot exceed p m + 1 , where p is an odd prime and m is non-negative. If p = 3 , we prove that every quasi-core-3 3-group has nilpotency class at most 5 and its commutator subgroup is of exponent at most 9. We also show that the Frattini subgroup of a quasi-core-2 2-group is abelian.


1969 ◽  
Vol 21 ◽  
pp. 418-429 ◽  
Author(s):  
James C. Beidleman

The theory of generalized Frattini subgroups of a finite group is continued in this paper. Several equivalent conditions are given for a proper normal subgroup H of a finite group G to be a generalized Frattini subgroup of G. One such condition on H is that K is nilpotent for each normal subgroup K of G such that K/H is nilpotent. From this result, it follows that the weakly hyper-central normal subgroups of a finite non-nilpotent group G are generalized Frattini subgroups of G.Let H be a generalized Frattini subgroup of G and let K be a subnormal subgroup of G which properly contains H. Then H is a generalized Frattini subgroup of K.Let ϕ(G) be the Frattini subgroup of G. Suppose that G/ϕ(G) is nonnilpotent, but every proper subgroup of G/ϕ(G) is nilpotent. Then ϕ(G) is the unique maximal generalized Frattini subgroup of G.


1982 ◽  
Vol 23 (1) ◽  
pp. 65-82 ◽  
Author(s):  
M. R. Dixon

In this paper we shall indicate how to generalise the concept of a cofinite group (see [7]). We recall that any residually finite group can be made into a topological group by taking as a basis of neighbourhoods of the identity precisely the normal subgroups of finite index. The class of compact cofinite groups is then easily seen to be the class of profinite groups, where a group is profinite if and only if it is an inverse limit of finite groups. It turns out that every cofinite group can be embedded as a dense subgroup of a profinite group. This has important consequences for the class of countable locally finite-soluble groups with finite Sylow p-subgroups for all primes p, as shown in [7] and [14].


1994 ◽  
Vol 36 (2) ◽  
pp. 241-247 ◽  
Author(s):  
A. Ballester-Bolinches ◽  
M. D. Pérez-Ramos

Throughout the paper we consider only finite groups.J. C. Beidleman and H. Smith [3] have proposed the following question: “If G is a group and Ha subnormal subgroup of G containing Φ(G), the Frattini subgroup of G, such that H/Φ(G)is supersoluble, is H necessarily supersoluble? “In this paper, we give not only an affirmative answer to this question but also we see that the above result still holds if supersoluble is replaced by any saturated formation containing the class of all nilpotent groups.


1973 ◽  
Vol 9 (2) ◽  
pp. 267-274 ◽  
Author(s):  
Fletcher Gross

Suppose G = AB where G is a finite group and A and B are nilpotent subgroups. It is proved that the derived length of G modulo its Frattini subgroup is at most the sum of the classes of A and B. An upper bound for the derived length of G in terms of the derived lengths of A and B also is obtained.


Algebra ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-3
Author(s):  
Qingjun Kong

It is well known that the Frattini subgroups of any finite groups are nilpotent. If a finite group is not nilpotent, it is not the Frattini subgroup of a finite group. In this paper, we mainly discuss what kind of finite nilpotent groups cannot be the Frattini subgroup of some finite groups and give some results. Moreover, we generalize Hobby’s Theorem.


Author(s):  
Ruslan V. Borodich

In the work of Beidleman and Smith [On Frattini-like subgroups, Glasgow Math. J. 35 (1993) 95–98], the following question was raised: “If [Formula: see text] is a subnormal subgroup of a finite group [Formula: see text] containing [Formula: see text], then whether the supersolvability of [Formula: see text] follows the supersolvability of [Formula: see text]”. This problem was considered in works of Selkin [Maximal Subgroups in the Theory of Classes of Finite Groups (Belaruskaya, Navuka, 1997)], Skiba [On the intersection of all maximal [Formula: see text]-subgroups of a finite group, Prob. Phys. Math. Tech. 3(4) (2010) 56–62], Ballester-Bolinches [On [Formula: see text]-subnormal subgroups and Frattini-like subgroups of a finite group, Glasgow Math. J. 36 (1994) 241–247] and many other authors (see monograph [Maximal Subgroups in the Theory of Classes of Finite Groups (Belaruskaya, Navuka, 1997)]). In this paper, we give the answer to the more general question: “Let [Formula: see text] be a local formation. If [Formula: see text] is a subnormal subgroup of a group [Formula: see text], then in what case [Formula: see text] will follow from [Formula: see text]”.


Sign in / Sign up

Export Citation Format

Share Document