Flipping properties in arithmetic

1982 ◽  
Vol 47 (2) ◽  
pp. 416-422 ◽  
Author(s):  
L. A. S. Kirby

Flipping properties were introduced in set theory by Abramson, Harrington, Kleinberg and Zwicker [1]. Here we consider them in the context of arithmetic and link them with combinatorial properties of initial segments of nonstandard models studied in [3]. As a corollary we obtain independence resutls involving flipping properties.We follow the notation of the author and Paris in [3] and [2], and assume some knowledge of [3]. M will denote a countable nonstandard model of P (Peano arithmetic) and I will be a proper initial segment of M. We denote by N the standard model or the standard part of M. X ↑ I will mean that X is unbounded in I. If X ⊆ M is coded in M and M ≺ K, let X(K) be the subset of K coded in K by the element which codes X in M. So X(K) ⋂ M = X.Recall that M ≺IK (K is an I-extension of M) if M ≺ K and for some c∈K,In [3] regular and strong initial segments are defined, and among other things it is shown that I is regular if and only if there exists an I-extension of M.

2017 ◽  
Vol 82 (1) ◽  
pp. 292-302 ◽  
Author(s):  
MAKOTO KIKUCHI ◽  
TAISHI KURAHASHI

AbstractGödel introduced the original provability predicate in the proofs of Gödel’s incompleteness theorems, and Rosser defined a new one. They are equivalent in the standard model ${\mathbb N}$ of arithmetic or any nonstandard model of ${\rm PA} + {\rm Con_{PA}} $, but the behavior of Rosser’s provability predicate is different from the original one in nonstandard models of ${\rm PA} + \neg {\rm Con_{PA}} $. In this paper, we investigate several properties of the derivability conditions for Rosser provability predicates, and prove the existence of a Rosser provability predicate with which we can define any consistent complete extension of ${\rm PA}$ in some nonstandard model of ${\rm PA} + \neg {\rm Con_{PA}} $. We call it a universal Rosser predicate. It follows from the theorem that the true arithmetic ${\rm TA}$ can be defined as the set of theorems of ${\rm PA}$ in terms of a universal Rosser predicate in some nonstandard model of ${\rm PA} + \neg {\rm Con_{PA}} $. By using this theorem, we also give a new proof of a theorem that there is a nonstandard model M of ${\rm PA} + \neg {\rm Con_{PA}} $ such that if N is an initial segment of M which is a model of ${\rm PA} + {\rm Con_{PA}} $ then every theorem of ${\rm PA}$ in N is a theorem of $\rm PA$ in ${\mathbb N}$. In addition, we prove that there is a Rosser provability predicate such that the set of theorems of $\rm PA$ in terms of the Rosser provability predicate is inconsistent in any nonstandard model of ${\rm PA} + \neg {\rm Con_{PA}} $.


1982 ◽  
Vol 47 (2) ◽  
pp. 403-415 ◽  
Author(s):  
Kenneth McAloon

AbstractLet P0 be the subsystem of Peano arithmetic obtained by restricting induction to bounded quantifier formulas. Let M be a countable, nonstandard model of P0 whose domain we suppose to be the standard integers. Let T be a recursively enumerable extension of Peano arithmetic all of whose existential consequences are satisfied in the standard model. Then there is an initial segment M′ of M which is a model of T such that the complete diagram of M′ is Turing reducible to the atomic diagram of M. Moreover, neither the addition nor the multiplication of M is recursive.


1984 ◽  
Vol 49 (2) ◽  
pp. 425-436 ◽  
Author(s):  
Julia Knight ◽  
Alistair H. Lachlan ◽  
Robert I. Soare

Let PA be the theory of first order Peano arithmetic, in the language L with binary operation symbols + and ·. Let N be the theory of the standard model of PA. We consider countable models M of PA such that the universe ∣M∣ is ω. The degree of such a model M, denoted by deg(M), is the (Turing) degree of the atomic diagram of M. The results of this paper concern the degrees of models of N, but here in the Introduction, we shall give a brief survey of results about degrees of models of PA.Let D0 denote the set of degrees d such that there is a nonstandard model of M of PA with deg(M) = d. Here are some of the more easily stated results about D0.(1) There is no recursive nonstandard model of PA; i.e., 0 ∈ D0.This is a result of Tennenbaum [T].(2) There existsd ∈ D0such thatd ≤ 0′.This follows from the standard Henkin argument.(3) There existsd ∈ D0such thatd < 0′.Shoenfield [Sh1] proved this, using the Kreisel-Shoenfield basis theorem.(4) There existsd ∈ D0such thatd′ = 0′.Jockusch and Soare [JS] improved the Kreisel-Shoenfield basis theorem and obtained (4).(5) D0 = Dc = De, where Dc denotes the set of degrees of completions of PA and De the set of degrees d such that d separates a pair of effectively inseparable r.e. sets.Solovay noted (5) in a letter to Soare in which in answer to a question posed in [JS] he showed that Dc is upward closed.


1983 ◽  
Vol 48 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Menachem Magidor ◽  
Saharon Shelah ◽  
Jonathan Stavi

AbstractWe characterize the ordinals α of uncountable cofinality such that α is the standard part of a nonstandard model of ZFC (or equivalently KP).


2003 ◽  
Vol 18 (22) ◽  
pp. 4085-4096 ◽  
Author(s):  
SHARADA IYER DUTTA ◽  
MARY HALL RENO ◽  
INA SARCEVIC

The ultrahigh energy neutrino cross section is well understood in the standard model for neutrino energies up to 1012 GeV, Tests of neutrino oscillations (νμ ↔ ντ) from extragalactic sources of neutrinos are possible with large underground detectors. Measurements of horizontal air shower event rates at neutrino energies above 1010 GeV will be able to constrain nonstandard model contributions to the neutrino-nucleon cross section, e.g., from mini-black hole production.


1973 ◽  
Vol 38 (1) ◽  
pp. 59-68 ◽  
Author(s):  
C. Ward Henson

In this paper we develop certain methods of proof in Quine's set theory NF which have no counterparts elsewhere. These ideas were first used by Specker [5] in his disproof of the Axiom of Choice in NF. They depend on the properties of two related operations, T(n) on cardinal numbers and U(α) on ordinal numbers, which are defined by the equationsfor each set x and well ordering R. (Here and below we use Rosser's notation [3].) The definitions insure that the formulas T(x) = y and U(x) = y are stratified when y is assigned a type one higher than x. The importance of T and U stems from the following facts: (i) each of T and U is a 1-1, order preserving operation from its domain onto a proper initial section of its domain; (ii) Tand U commute with most of the standard operations on cardinal and ordinal numbers.These basic facts are discussed in §1. In §2 we prove in NF that the exponential function 2n is not 1-1. Indeed, there exist cardinal numbers m and n which satisfyIn §3 we prove the following technical result, which has many important applications. Suppose f is an increasing function from an initial segment S of the set NO of ordinal numbers into NO and that f commutes with U.


1995 ◽  
Vol 60 (1) ◽  
pp. 318-324 ◽  
Author(s):  
V. Kanovei

AbstractWe prove that in IST, Nelson's internal set theory, the Uniqueness and Collection principles, hold for all (including external) formulas. A corollary of the Collection theorem shows that in IST there are no definable mappings of a set X onto a set Y of greater (not equal) cardinality unless both sets are finite and #(Y) ≤ n #(X) for some standard n. Proofs are based on a rather general technique which may be applied to other nonstandard structures. In particular we prove that in a nonstandard model of PA, Peano arithmetic, every hyperinteger uniquely definable by a formula of the PA language extended by the predicate of standardness, can be defined also by a pure PA formula.


2016 ◽  
Vol 81 (3) ◽  
pp. 1163-1175 ◽  
Author(s):  
MAKOTO KIKUCHI ◽  
TAISHI KURAHASHI

AbstractBy using a provability predicate of PA, we define ThmPA(M) as the set of theorems of PA in a model M of PA. We say a model M of PA is (1) illusory if ThmPA(M) ⊈ ThmPA(ℕ), (2) heterodox if ThmPA(M) ⊈ TA, (3) sane if M ⊨ ConPA, and insane if it is not sane, (4) maximally sane if it is sane and ThmPA(M) ⊆ ThmPA(N) implies ThmPA(M) = ThmPA(N) for every sane model N of PA. We firstly show that M is heterodox if and only if it is illusory, and that ThmPA(M) ∩ TA ≠ ThmPA(ℕ) for any illusory model M. Then we show that there exists a maximally sane model, every maximally sane model satisfies ¬ConPA+ConPA, and there exists a sane model of ¬ConPA+ConPA which is not maximally sane. We define that an insane model is (5) illusory by nature if its every initial segment being a nonstandard model of PA is illusory, and (6) going insane suddenly if its every initial segment being a sane model of PA is not illusory. We show that there exists a model of PA which is illusory by nature, and we prove the existence of a model of PA which is going insane suddenly.


1991 ◽  
Vol 56 (3) ◽  
pp. 885-890 ◽  
Author(s):  
Zofia Adamowicz

Let S be a recursive theory. Let a theory T* consisting of Σ1 sentences be called maximal (with respect to S) if T* is maximal consistent with S, i.e. there is no Σ1 sentence consistent with T* + S which is not in T*.A maximal theory with respect to IΔ0 was considered by Wilkie and Paris in [WP] in connection with the end-extension problem.Let us recall that IΔ0 is the fragment of Peano arithmetic consisting of the finite collection of algebraic axioms PA− together with the induction scheme restricted to bounded formulas.The main open problem concerning the end-extendability of models of IΔ0 is the following:(*) Does every model of IΔ0 + BΣ1 have a proper end-extension to a model of IΔ0?Here BΣ1 is the following collection scheme:where φ runs over bounded formulas and may contain parameters.It is well known(see [KP]) that if I is a proper initial segment of a model M of IΔ0, then I satisfies IΔ0 + BΣ1.For a wide discussion of the problem (*) see [WP]. Wilkie and Paris construct in [WP] a model M of IΔ0 + BΣ1 which has no proper end-extension to a model of IΔ0 under the assumption IΔ0 ⊢¬Δ0H (see [WP] for an explanation of this assumption). Their model M is a model of a maximal theory T* where S = IΔ0.Moreover, T*, which is the set Σ1(M) of all Σ1 sentences true in M, is not codable in M.


2017 ◽  
Vol 23 (3) ◽  
pp. 296-323 ◽  
Author(s):  
ROSS T. BRADY

AbstractThis is a general account of metavaluations and their applications, which can be seen as an alternative to standard model-theoretic methodology. They work best for what are called metacomplete logics, which include the contraction-less relevant logics, with possible additions of Conjunctive Syllogism, (A→B) & (B→C) → .A→C, and the irrelevant, A→ .B→A, these including the logic MC of meaning containment which is arguably a good entailment logic. Indeed, metavaluations focus on the formula-inductive properties of theorems of entailment form A→B, splintering into two types, M1- and M2-, according to key properties of negated entailment theorems (see below). Metavaluations have an inductive presentation and thus have some of the advantages that model theory does, but they represent proof rather than truth and thus represent proof-theoretic properties, such as the priming property, if ├ A $\vee$ B then ├ A or ├ B, and the negated-entailment properties, not-├ ∼(A→B) (for M1-logics, with M1-metavaluations) and ├ ∼(A→B) iff ├ A and ├ ∼ B (for M2-logics, with M2-metavaluations). Topics to be covered are their impact on naive set theory and paradox solution, and also Peano arithmetic and Godel’s First and Second Theorems. Interesting to note here is that the familiar M1- and M2-metacomplete logics can be used to solve the set-theoretic paradoxes and, by inference, the Liar Paradox and key semantic paradoxes. For M1-logics, in particular, the final metavaluation that is used to prove the simple consistency is far simpler than its correspondent in the model-theoretic proof in that it consists of a limit point of a single transfinite sequence rather than that of a transfinite sequence of such limit points, as occurs in the model-theoretic approach. Additionally, it can be shown that Peano Arithmetic is simply consistent, using metavaluations that constitute finitary methods. Both of these results use specific metavaluational properties that have no correspondents in standard model theory and thus it would be highly unlikely that such model theory could prove these results in their final forms.


Sign in / Sign up

Export Citation Format

Share Document