Forcing and reducibilities

1983 ◽  
Vol 48 (2) ◽  
pp. 288-310 ◽  
Author(s):  
Piergiorgio Odifreddi

We see far away, Newton said, if we stand on giants' shoulders. We take him seriously here and moreover (as appropriate to recursion-theorists) we will jump from one giant to another, since this paper is mostly an exegesis of two fundamental works: Feferman's Some applications of the notions of forcing and generic sets [4] and Sacks' Forcing with perfect closed sets [19]. We hope the reader is not afraid of heights: our exercises are risky ones, since the two giants are in turn on the shoulders of others! Feferman [4] rests on the basic works of Cohen [2], who introduced forcing with finite conditions in the context of set theory; Sacks [19] relies on Spector [24], who realized—in recursion theory—the necessity of more powerful approximations than the finite ones.To minimize the risk we will try to keep technicalities to a minimum, choosing to give priority to the methodology of forcing. We do not suppose any previous knowledge of forcing in the reader, but we do require some acquaintance with recursion theory. After all, our interest lies in the applications of the forcing method to the study of various recursion-theoretic notions of degrees. The farther we go, the deeper we plunge into recursion theory.In Part I only very basic notions and results are used, like the definitions of the arithmetical hierarchy and of the jump operator and their relationships.


1987 ◽  
Vol 52 (1) ◽  
pp. 208-213
Author(s):  
Robert S. Lubarsky

Much of recursion theory centers on the structures of different kinds of degrees. Classically there are the Turing degrees and r. e. Turing degrees. More recently, people have studied α-degrees for α an ordinal, and degrees over E-closed sets and admissible sets. In most contexts, deg(0) is the bottom degree and there is a jump operator' such that d' is the largest degree r. e. in d and d' > d. Both the degrees and the r. e. degrees usually have a rich structure, including a relativization to the cone above a given degree.A natural exception to this pattern was discovered by S. Friedman [F], who showed that for certain admissible ordinals β the β-degrees ≥ 0′ are well-ordered, with successor provided by the jump.For r. e. degrees, natural counterexamples are harder to come by. This is because the constructions are priority arguments, which require only mild restrictions on the ground model. For instance, if an admissible set has a well-behaved pair of recursive well-orderings then the priority construction of an intermediate r. e. degree (i.e., 0 < d < 0′) goes through [S]. It is of interest to see just what priority proofs need by building (necessarily pathological) admissible sets with few r. e. degrees.Harrington [C] provides an admissible set with two r. e. degrees, via forcing. A limitation of his example is that it needs ω1 (more accurately, a local version thereof) as a parameter. In this paper, we find locally countable admissible sets, some with three r. e. degrees and some with four.



Author(s):  
John P. Burgess

This article explores the role of logic in philosophical methodology, as well as its application in philosophy. The discussion gives a roughly equal coverage to the seven branches of logic: elementary logic, set theory, model theory, recursion theory, proof theory, extraclassical logics, and anticlassical logics. Mathematical logic comprises set theory, model theory, recursion theory, and proof theory. Philosophical logic in the relevant sense is divided into the study of extensions of classical logic, such as modal or temporal or deontic or conditional logics, and the study of alternatives to classical logic, such as intuitionistic or quantum or partial or paraconsistent logics. The nonclassical consists of the extraclassical and the anticlassical, although the distinction is not clearcut.



2011 ◽  
Vol 76 (2) ◽  
pp. 491-518 ◽  
Author(s):  
George Barmpalias ◽  
Rod Downey ◽  
Keng Meng Ng

AbstractWe study inversions of the jump operator on classes, combined with certain basis theorems. These jump inversions have implications for the study of the jump operator on the random degrees—for various notions of randomness. For example, we characterize the jumps of the weakly 2-random sets which are not 2-random, and the jumps of the weakly 1-random relative to 0′ sets which are not 2-random. Both of the classes coincide with the degrees above 0′ which are not 0′-dominated. A further application is the complete solution of [24, Problem 3.6.9]: one direction of van Lambalgen's theorem holds for weak 2-randomness, while the other fails.Finally we discuss various techniques for coding information into incomplete randoms. Using these techniques we give a negative answer to [24, Problem 8.2.14]: not all weakly 2-random sets are array computable. In fact, given any oracle X, there is a weakly 2-random which is not array computable relative to X. This contrasts with the fact that all 2-random sets are array computable.



2013 ◽  
Vol 13 (01) ◽  
pp. 1350002
Author(s):  
JINDŘICH ZAPLETAL

Certain separation problems in descriptive set theory correspond to a forcing preservation property, with a fusion type infinite game associated to it. As an application, it is consistent with the axioms of set theory that the circle 𝕋 can be covered by ℵ1 many closed sets of uniqueness while a much larger number of H-sets is necessary to cover it.



1990 ◽  
Vol 55 (1) ◽  
pp. 194-206 ◽  
Author(s):  
Robert S. Lubarsky

The program of reverse mathematics has usually been to find which parts of set theory, often used as a base for other mathematics, are actually necessary for some particular mathematical theory. In recent years, Slaman, Groszek, et al, have given the approach a new twist. The priority arguments of recursion theory do not naturally or necessarily lead to a foundation involving any set theory; rather, Peano Arithmetic (PA) in the language of arithmetic suffices. From this point, the appropriate subsystems to consider are fragments of PA with limited induction. A theorem in this area would then have the form that certain induction axioms are independent of, necessary for, or even equivalent to a theorem about the Turing degrees. (See, for examples, [C], [GS], [M], [MS], and [SW].)As go the integers so go the ordinals. One motivation of α-recursion theory (recursion on admissible ordinals) is to generalize classical recursion theory. Since induction in arithmetic is meant to capture the well-foundedness of ω, the corresponding axiom in set theory is foundation. So reverse mathematics, even in the context of a set theory (admissibility), can be changed by the influence of reverse recursion theory. We ask not which set existence axioms, but which foundation axioms, are necessary for the theorems of α-recursion theory.When working in the theory KP – Foundation Schema (hereinafter called KP−), one should really not call it α-recursion theory, which refers implicitly to the full set of axioms KP. Just as the name β-recursion theory refers to what would be α-recursion theory only it includes also inadmissible ordinals, we call the subject of study here γ-recursion theory. This answers a question by Sacks and S. Friedman, “What is γ-recursion theory?”



1989 ◽  
Vol 54 (1) ◽  
pp. 16-25
Author(s):  
Ljubomir L. Ivanov

AbstractThe aim of this paper is to enrich the algebraic-axiomatic approach to recursion theory developed in [1] by an analogue to the classical arithmetical hierarchy and an abstract notion of degree. The results presented here are rather initial and elementary; indeed, the main problem was the very choice of right abstract concepts.



Sign in / Sign up

Export Citation Format

Share Document