Simple r. e. degree structures

1987 ◽  
Vol 52 (1) ◽  
pp. 208-213
Author(s):  
Robert S. Lubarsky

Much of recursion theory centers on the structures of different kinds of degrees. Classically there are the Turing degrees and r. e. Turing degrees. More recently, people have studied α-degrees for α an ordinal, and degrees over E-closed sets and admissible sets. In most contexts, deg(0) is the bottom degree and there is a jump operator' such that d' is the largest degree r. e. in d and d' > d. Both the degrees and the r. e. degrees usually have a rich structure, including a relativization to the cone above a given degree.A natural exception to this pattern was discovered by S. Friedman [F], who showed that for certain admissible ordinals β the β-degrees ≥ 0′ are well-ordered, with successor provided by the jump.For r. e. degrees, natural counterexamples are harder to come by. This is because the constructions are priority arguments, which require only mild restrictions on the ground model. For instance, if an admissible set has a well-behaved pair of recursive well-orderings then the priority construction of an intermediate r. e. degree (i.e., 0 < d < 0′) goes through [S]. It is of interest to see just what priority proofs need by building (necessarily pathological) admissible sets with few r. e. degrees.Harrington [C] provides an admissible set with two r. e. degrees, via forcing. A limitation of his example is that it needs ω1 (more accurately, a local version thereof) as a parameter. In this paper, we find locally countable admissible sets, some with three r. e. degrees and some with four.

1990 ◽  
Vol 55 (1) ◽  
pp. 194-206 ◽  
Author(s):  
Robert S. Lubarsky

The program of reverse mathematics has usually been to find which parts of set theory, often used as a base for other mathematics, are actually necessary for some particular mathematical theory. In recent years, Slaman, Groszek, et al, have given the approach a new twist. The priority arguments of recursion theory do not naturally or necessarily lead to a foundation involving any set theory; rather, Peano Arithmetic (PA) in the language of arithmetic suffices. From this point, the appropriate subsystems to consider are fragments of PA with limited induction. A theorem in this area would then have the form that certain induction axioms are independent of, necessary for, or even equivalent to a theorem about the Turing degrees. (See, for examples, [C], [GS], [M], [MS], and [SW].)As go the integers so go the ordinals. One motivation of α-recursion theory (recursion on admissible ordinals) is to generalize classical recursion theory. Since induction in arithmetic is meant to capture the well-foundedness of ω, the corresponding axiom in set theory is foundation. So reverse mathematics, even in the context of a set theory (admissibility), can be changed by the influence of reverse recursion theory. We ask not which set existence axioms, but which foundation axioms, are necessary for the theorems of α-recursion theory.When working in the theory KP – Foundation Schema (hereinafter called KP−), one should really not call it α-recursion theory, which refers implicitly to the full set of axioms KP. Just as the name β-recursion theory refers to what would be α-recursion theory only it includes also inadmissible ordinals, we call the subject of study here γ-recursion theory. This answers a question by Sacks and S. Friedman, “What is γ-recursion theory?”


1988 ◽  
Vol 53 (3) ◽  
pp. 708-728 ◽  
Author(s):  
Howard Becker

The topic of this paper is jump operators, a subject which originated with some questions of Martin and a partial answer to them obtained by Steel [18]. The topic of jump operators is a part of the general study of the structure of the Turing degrees, but it is concerned with an aspect of that structure which is different from the usual concerns of classical recursion theory. Specifically, it is concerned with studying functions on the degrees, such as the Turing jump operator, the hyperjump operator, and the sharp operator.Roughly speaking, a jump operator is a definable ≤T-increasing function on the Turing degrees. The purpose of this paper is to characterize the jump operators, in terms of concepts from descriptive set theory. Again roughly speaking, the main theorem states that all jump operators (other than the identity function) are obtained from pointclasses by the same process by which the hyperjump operator is obtained from the pointclass Π11; that is, if Γ is the pointclass, then the operator maps the real x to the universal Γ(x) subset of ω. This characterization theorem has some corollaries, one of which answers a question of Steel [18]. In §1 we give a brief introduction to this general topic, followed by a brief (and still somewhat imprecise) description of the results contained in this paper.


1977 ◽  
Vol 42 (4) ◽  
pp. 492-505 ◽  
Author(s):  
John Stewart Schlipf

The notion of the next admissible set has proved to be a very useful notion in definability theory and generalized recursion theory, a unifying notion that has produced further interesting results in its own right. The basic treatment of the next admissible set above a structure ℳ of urelements is to be found in Barwise's [75] book Admissible sets and structures. Also to be found there are many of the interesting characterizations of the next admissible set. For further justification of the interest of the next admissible set the reader is referred to Moschovakis [74], Nadel and Stavi [76] and Schlipf [78a, b, c].One of the most interesting single properties of is its ordinal (ℳ). It coincides, for example, with Moschovakis' inductive closure ordinal over structures ℳ with pairing functions—and over some, such as algebraically closed fields of characteristic 0, without pairing functions (by recent work of Arthur Rubin) (although a locally famous counterexample of Kunen, a theorem of Barwise [77], and some recent results of Rubin and the author, show that the inductive closure ordinal may also be strictly smaller in suitably pathological structures). Further justification for looking at (ℳ) alone may be found in the above-listed references. Loosely, we can consider the size of to be a useful measure of the complexity of ℳ. One of the simplest measures of the size of —and yet a very useful measure—is its ordinal, (ℳ). Keisler has suggested thinking of (ℳ) as the information content of a model—the supremum of lengths of wellfounded relations characterizable in the model.


1983 ◽  
Vol 48 (2) ◽  
pp. 288-310 ◽  
Author(s):  
Piergiorgio Odifreddi

We see far away, Newton said, if we stand on giants' shoulders. We take him seriously here and moreover (as appropriate to recursion-theorists) we will jump from one giant to another, since this paper is mostly an exegesis of two fundamental works: Feferman's Some applications of the notions of forcing and generic sets [4] and Sacks' Forcing with perfect closed sets [19]. We hope the reader is not afraid of heights: our exercises are risky ones, since the two giants are in turn on the shoulders of others! Feferman [4] rests on the basic works of Cohen [2], who introduced forcing with finite conditions in the context of set theory; Sacks [19] relies on Spector [24], who realized—in recursion theory—the necessity of more powerful approximations than the finite ones.To minimize the risk we will try to keep technicalities to a minimum, choosing to give priority to the methodology of forcing. We do not suppose any previous knowledge of forcing in the reader, but we do require some acquaintance with recursion theory. After all, our interest lies in the applications of the forcing method to the study of various recursion-theoretic notions of degrees. The farther we go, the deeper we plunge into recursion theory.In Part I only very basic notions and results are used, like the definitions of the arithmetical hierarchy and of the jump operator and their relationships.


1972 ◽  
Vol 37 (4) ◽  
pp. 677-682 ◽  
Author(s):  
George Metakides

Let α be a limit ordinal with the property that any “recursive” function whose domain is a proper initial segment of α has its range bounded by α. α is then called admissible (in a sense to be made precise later) and a recursion theory can be developed on it (α-recursion theory) by providing the generalized notions of α-recursively enumerable, α-recursive and α-finite. Takeuti [12] was the first to study recursive functions of ordinals, the subject owing its further development to Kripke [7], Platek [8], Kreisel [6], and Sacks [9].Infinitary logic on the other hand (i.e., the study of languages which allow expressions of infinite length) was quite extensively studied by Scott [11], Tarski, Kreisel, Karp [5] and others. Kreisel suggested in the late '50's that these languages (even which allows countable expressions but only finite quantification) were too large and that one should only allow expressions which are, in some generalized sense, finite. This made the application of generalized recursion theory to the logic of infinitary languages appear natural. In 1967 Barwise [1] was the first to present a complete formalization of the restriction of to an admissible fragment (A a countable admissible set) and to prove that completeness and compactness hold for it. [2] is an excellent reference for a detailed exposition of admissible languages.


2000 ◽  
Vol 65 (3) ◽  
pp. 1193-1203 ◽  
Author(s):  
P.D. Welch

AbstractWe characterise explicitly the decidable predicates on integers of Infinite Time Turing machines, in terms of admissibility theory and the constructible hierarchy. We do this by pinning down ζ, the least ordinal not the length of any eventual output of an Infinite Time Turing machine (halting or otherwise); using this the Infinite Time Turing Degrees are considered, and it is shown how the jump operator coincides with the production of mastercodes for the constructible hierarchy; further that the natural ordinals associated with the jump operator satisfy a Spector criterion, and correspond to the Lζ-stables. It also implies that the machines devised are “Σ2 Complete” amongst all such other possible machines. It is shown that least upper bounds of an “eventual jump” hierarchy exist on an initial segment.


Author(s):  
Harold Hodes

A reducibility is a relation of comparative computational complexity (which can be made precise in various non-equivalent ways) between mathematical objects of appropriate sorts. Much of recursion theory concerns such relations, initially between sets of natural numbers (in so-called classical recursion theory), but later between sets of other sorts (in so-called generalized recursion theory). This article considers only the classical setting. Also Turing first defined such a relation, now called Turing- (or just T-) reducibility; probably most logicians regard it as the most important such relation. Turing- (or T-) degrees are the units of computational complexity when comparative complexity is taken to be T-reducibility.


1977 ◽  
Vol 42 (1) ◽  
pp. 33-46 ◽  
Author(s):  
Mark Nadel ◽  
Jonathan Stavi

AbstractLet ℳ be a structure for a language ℒ on a set M of urelements. HYP(ℳ) is the least admissible set above ℳ. In §1 we show that pp(HYP(ℳ)) [= the collection of pure sets in HYP(ℳ)] is determined in a simple way by the ordinal α = ° (HYP(ℳ)) and the ℒxω theory of ℳ up to quantifier rank α. In §2 we consider the question of which pure countable admissible sets are of the form pp(HYP(ℳ)) for some ℳ and show that all sets Lα (α admissible) are of this form. Other positive and negative results on this question are obtained.


2011 ◽  
Vol 76 (2) ◽  
pp. 491-518 ◽  
Author(s):  
George Barmpalias ◽  
Rod Downey ◽  
Keng Meng Ng

AbstractWe study inversions of the jump operator on classes, combined with certain basis theorems. These jump inversions have implications for the study of the jump operator on the random degrees—for various notions of randomness. For example, we characterize the jumps of the weakly 2-random sets which are not 2-random, and the jumps of the weakly 1-random relative to 0′ sets which are not 2-random. Both of the classes coincide with the degrees above 0′ which are not 0′-dominated. A further application is the complete solution of [24, Problem 3.6.9]: one direction of van Lambalgen's theorem holds for weak 2-randomness, while the other fails.Finally we discuss various techniques for coding information into incomplete randoms. Using these techniques we give a negative answer to [24, Problem 8.2.14]: not all weakly 2-random sets are array computable. In fact, given any oracle X, there is a weakly 2-random which is not array computable relative to X. This contrasts with the fact that all 2-random sets are array computable.


1976 ◽  
Vol 41 (1) ◽  
pp. 109-120
Author(s):  
Anders M. Nyberg

Introduction. The purpose of this paper is to show how results from the theory of inductive definitions can be used to obtain new compactness theorems for uncountable admissible languages. These will include improvements of the compactness theorem by J. Green [9].In [2] Barwise studies admissible sets satisfying the Σ1-compactness theorem. Our approach is to consider admissible sets satisfying what could be called the abstract extended completeness theorem, that is, sets where the consequence relation of the admissible fragment LA is Σ1-definable over A. We will call such sets Σ1-complete. For countable admissible sets, Σ1-completeness follows from the completeness theorem for LA.Having restricted our attention to Σ1-complete sets we are led to a stronger notion also true on countable admissible sets, namely what we shall call uniform Σ1-completeness. We will see that this notion can be viewed as extending to uncountable admissible sets, properties related to both the “recursion theory” and “proof theory” of countable admissible sets.By following Barwise's recent approach to admissible sets allowing “urelements,” we show that there is a natural connection between certain structures arising from the theory of inductive definability, and uniformly Σ1-complete admissible sets . The structures we have in mind are called uniform Kleene structures.


Sign in / Sign up

Export Citation Format

Share Document