The uniqueness of envelopes in ℵ0-categorical, ℵ0-stable structures

1984 ◽  
Vol 49 (4) ◽  
pp. 1171-1184 ◽  
Author(s):  
James Loveys

The Classification Theorem for ℵ0-categorical strictly minimal sets says that if H is strictly minimal and ℵ0-categorical, either H has in effect no structure at all or is essentially an affine or projective space over a finite field. Zil′ber, in [Z2], showed that if H were a counterexample to this Classification Theorem it would interpret a rank 2, degree 1 pseudoplane. Cherlin later noticed (see [CHL, Appendices 2 and 3], for the proof) that the Classification Theorem is a consequence of the Classification Theorem for finite simple groups. In [Z4] and [Z5], Zil′ber found a quite different proof of the Classification Theorem using no deep group theory.Meanwhile in [Z3], Zil′ber introduced the notion of envelope in an attempt to prove that no complete totally categorical theory T can be finitely axiomatizable. The idea of the proof was to show that if M is a model of such a T and H ⊆ M is strongly minimal, then an envelope of any sufficiently large finite subset of H is a finite model of any fixed finite subset of T. [Z3] contains an error, which Zil′ber has since corrected (in a nontrivial way).In [CHL], Cherlin, Harrington and Lachlan used the Classification Theorem to expand and reorganize Zil′ber's work. In particular, they generalized most of his work to ℵ0-categorical, ℵ0-stable structures, proved the Morley rank is finite in these structures, and introduced the powerful Coordinatization Theorem (Theorem 3.1 of [CHL]; Proposition 1.14 of the present paper). They also showed that ℵ0-categorical, ℵ0-stable structures are not finitely axiomatizable using a notion of envelope that is the same as Zil′ber's except in one particularly perverse case; [CHL]'s notion of envelope is used throughout the current paper. Peretyat'kin [P] has found an example of an ℵ1-categorical finitely axiomatizable structure.


Author(s):  
Zhenfeng Wu

Denote by [Formula: see text] the number of Sylow [Formula: see text]-subgroups of [Formula: see text]. For every subgroup [Formula: see text] of [Formula: see text], it is easy to see that [Formula: see text], but [Formula: see text] does not divide [Formula: see text] in general. Following [W. Guo and E. P. Vdovin, Number of Sylow subgroups in finite groups, J. Group Theory 21(4) (2018) 695–712], we say that a group [Formula: see text] satisfies DivSyl(p) if [Formula: see text] divides [Formula: see text] for every subgroup [Formula: see text] of [Formula: see text]. In this paper, we show that “almost for every” finite simple group [Formula: see text], there exists a prime [Formula: see text] such that [Formula: see text] does not satisfy DivSyl(p).



2000 ◽  
Vol 65 (1) ◽  
pp. 371-391 ◽  
Author(s):  
John T. Baldwin ◽  
Kitty Holland

AbstractWe provide a general framework for studying the expansion of strongly minimal sets by adding additional relations in the style of Hrushovski. We introduce a notion of separation of quantifiers which is a condition on the class of expansions of finitely generated models for the expanded theory to have a countable ω-saturated model. We apply these results to construct for each sufficiently fast growing finite-to-one function μ from ‘primitive extensions’ to the natural numbers a theory Tμ of an expansion of an algebraically closed field which has Morley rank 2. Finally, we show that if μ is not finite-to-one the theory may not be ω-stable.



2012 ◽  
Vol 430-432 ◽  
pp. 1265-1268
Author(s):  
Xiao Qiang Guo ◽  
Zheng Jun He

Since the classification of finite simple groups completed last century, the applications of group theory are more and more widely. We first introduce the connection of groups and symmetry. And then we respectively introduce the applications of group theory in polynomial equation, algebraic topology, algebraic geometry , cryptography, algebraic number theory, physics and chemistry.



2002 ◽  
Vol 67 (4) ◽  
pp. 1570-1578 ◽  
Author(s):  
Jeffrey Burdges ◽  
Gregory Cherlin

Borovik proposed an axiomatic treatment of Morley rank in groups, later modified by Poizat, who showed that in the context of groups the resulting notion of rank provides a characterization of groups of finite Morley rank [2]. (This result makes use of ideas of Lascar, which it encapsulates in a neat way.) These axioms form the basis of the algebraic treatment of groups of finite Morley rank undertaken in [1].There are, however, ranked structures, i.e., structures on which a Borovik-Poizat rank function is defined, which are not ℵ0-stable [1, p. 376]. In [2, p. 9] Poizat raised the issue of the relationship between this notion of rank and stability theory in the following terms: “… un groupe de Borovik est une structure stable, alors qu'un univers rangé n'a aucune raison de l'être …” (emphasis added). Nonetheless, we will prove the following:Theorem 1.1. A ranked structure is superstable.An example of a non-ℵ0-stable structure with Borovik-Poizat rank 2 is given in [1, p. 376]. Furthermore, it appears that this example can be modified in a straightforward way to give ℵ0-stable structures of Borovik-Poizat rank 2 in which the Morley rank is any countable ordinal (which would refute a claim of [1, p. 373, proof of C.4]). We have not checked the details. This does not leave much room for strenghthenings of our theorem. On the other hand, the proof of Theorem 1.1 does give a finite bound for the heights of certain trees of definable sets related to unsuperstability, as we will see in Section 5.



1984 ◽  
Vol 49 (1) ◽  
pp. 317-321 ◽  
Author(s):  
Anand Pillay


2013 ◽  
Vol 154 (3) ◽  
pp. 527-547 ◽  
Author(s):  
ULRICH MEIERFRANKENFELD ◽  
GERNOT STROTH ◽  
RICHARD M. WEISS

AbstractWe give a short proof of the uniqueness of finite spherical buildings of rank at least 3 in terms of the structure of the rank 2 residues and use this result to prove a result making it possible to identify an arbitrary finite group of Lie type from knowledge of its “parabolic structure” alone. Our proof also involves a connection between loops, “Latin chamber systems” and buildings.



Sign in / Sign up

Export Citation Format

Share Document