Undecidability of the identity problem for finite semigroups

1992 ◽  
Vol 57 (1) ◽  
pp. 179-192 ◽  
Author(s):  
Douglas Albert ◽  
Robert Baldinger ◽  
John Rhodes

In 1947 E. Post [28] and A. A. Markov [18] independently proved the undecidability of the word problem (or the problem of deducibility of relations) for semigroups. In 1968 V. L. Murskil [23] proved the undecidability of the identity problem (or the problem of deducibility of identities) in semigroups.If we slightly generalize the statement of these results we can state many related results in the literature and state our new results proved here. Let V denote either a (Birkhoff) variety of semigroups or groups or a pseudovariety of finite semigroups. By a very well-known theorem a (Birkhoff) variety is defined by equations or equivalently closed under substructure, surmorphisms and all products; see [7]. It is also well known that V is a pseudovariety of finite semigroups iff V is closed under substructure, surmorphism and finite products, or, equivalently, determined eventually by equations w1 = w1′, w2 = w2′, w3 = w3′,… (where the finite semigroup S eventually satisfies these equations iff there exists an n, depending on S, such that S satisfies Wj = Wj′ for j ≥ n). See [8] and [29]. All semigroups form a variety while all finite semigroups form a pseudovariety.We now consider a table (see the next page). In it, for example, the box denoting the “word” (identity) problem for the psuedovariety V” means, given a finite set of relations (identities) E and a relation (identity) u = ν, the problem of whether it is decidable that E implies u = ν inside V.

1984 ◽  
Vol 49 (1) ◽  
pp. 184-191 ◽  
Author(s):  
Yuri Gurevich ◽  
Harry R. Lewis

By theword problemfor some class of algebraic structures we mean the problem of determining, given a finite setEof equations between words (i.e. terms) and an additional equationx=y, whetherx=ymust hold in all structures satisfying each member ofE. In 1947 Post [P] showed the word problem for semigroups to be undecidable. This result was strengthened in 1950 by Turing, who showed the word problem to be undecidable forcancellation semigroups,i.e. semigroups satisfying thecancellation propertyNovikov [N] eventually showed the word problem for groups to be undecidable.(Many flaws in Turing's proof were corrected by Boone [B]. Even after his corrections, at least one problem remains; the sentence on line 16 of p. 502 of [T] does not follow if one relation is principal and the other is a commutation relation. A corrected and somewhat simplified version of Turing's proof can be built on the construction given here.)In 1966 Gurevich [G] showed the word problem to be undecidable forfinitesemigroups. However, this result on finite structures has not been extended to cancellation semigroups or groups; indeed it is easy to see that a finite cancellation semigroup is a group, so both questions are the same. We do not here settle the word problem for finite groups, but we do show that the word problem is undecidable for finite semigroups with zero (that is, having an element 0 such thatx0 = 0x= 0 for allx) satisfying an approximation to the cancellation property (1).


2014 ◽  
Vol Vol. 16 no. 1 (Automata, Logic and Semantics) ◽  
Author(s):  
José Carlos Costa

Automata, Logic and Semantics International audience The implicit signature κ consists of the multiplication and the (ω-1)-power. We describe a procedure to transform each κ-term over a finite alphabet A into a certain canonical form and show that different canonical forms have different interpretations over some finite semigroup. The procedure of construction of the canonical forms, which is inspired in McCammond\textquoterights normal form algorithm for ω-terms interpreted over the pseudovariety A of all finite aperiodic semigroups, consists in applying elementary changes determined by an elementary set Σ of pseudoidentities. As an application, we deduce that the variety of κ-semigroups generated by the pseudovariety S of all finite semigroups is defined by the set Σ and that the free κ-semigroup generated by the alphabet A in that variety has decidable word problem. Furthermore, we show that each ω-term has a unique ω-term in canonical form with the same value over A. In particular, the canonical forms provide new, simpler, representatives for ω-terms interpreted over that pseudovariety.


Author(s):  
James Wiegold ◽  
H. Lausch

AbstractThe growth sequence of a finite semigroup S is the sequence {d(Sn)}, where Sn is the nth direct power of S and d stands for minimum generating number. When S has an identity, d(Sn) = d(Tn) + kn for all n, where T is the group of units and k is the minimum number of generators of S mod T. Thus d(Sn) is essentially known since d(Tn) is (see reference 4), and indeed d(Sn) is then eventually piecewise linear. On the other hand, if S has no identity, there exists a real number c > 1 such that d(Sn) ≥ cn for all n ≥ 2.


1998 ◽  
Vol 08 (06) ◽  
pp. 671-679 ◽  
Author(s):  
Stanislav Kublanovsky ◽  
Mark Sapir

We prove that there is no algorithm to decide, given a finite semigroup S and two elements a, b∈S, whether there exists a bigger finite semigroup T>S where a divides b and b divides a. This solves a thirty years old problem by John Rhodes.


2006 ◽  
Vol 16 (01) ◽  
pp. 119-140 ◽  
Author(s):  
MARCEL JACKSON ◽  
RALPH McKENZIE

We show that a number of natural membership problems for classes associated with finite semigroups are computationally difficult. In particular, we construct a 55-element semigroup S such that the finite membership problem for the variety of semigroups generated by S interprets the graph 3-colorability problem.


1985 ◽  
Vol 28 (1) ◽  
pp. 13-34 ◽  
Author(s):  
Emilia Giraldes ◽  
John M. Howie

By the rank r(S) of a finite semigroup S we shall mean the minimum cardinality of a set of generators ofS. For a group G, as remarked in [3], one has r(G)≦log2|G|, the bound being attained when G is an elementary abelian 2-group. By contrast, we shall see that there exist finite semigroups S for which r(S)≧|S| – 1. In the hope that it will not be considered too whimsical, we shall refer to a finite semigroup S of maximal rank (i.e. for which r(S) = |S|) as royal; a semigroup of next-to-maximal rank (i.e. for which r(S) = |S|–1) will be called noble.


2007 ◽  
Vol 14 (02) ◽  
pp. 245-254 ◽  
Author(s):  
Kunitaka Shoji

In this paper, we prove that a completely 0-simple (or completely simple) semigroup is an amalgamation base for finite semigroups if and only if it is an amalgamation base for semigroups. By adopting the same method as used in a previous paper, we prove that a finite regular semigroup is an amalgamation base for finite semigroups if its [Formula: see text]-classes are linearly ordered and all of its principal factor semigroups are amalgamation bases for finite semigroups. Finally, we give an example of a finite semigroup U which is an amalgamation base for semigroups, but not all of its principal factor semigroups are amalgamation bases either for semigroups or for finite semigroups.


1964 ◽  
Vol 16 ◽  
pp. 509-516 ◽  
Author(s):  
N. S. Mendelsohn

This paper describes a systematic procedure which yields in a finite number of steps a solution to the following problem. Let G be a group generated by a finite set of generators g1, g2, g3, . . . , gr and defined by a finite set of relations R1 = R2 = . . . = Rk = I, where I is the unit element of G and R1R2, . . . , Rk are words in the gi and gi-1. Let H be a subgroup of G, known to be of finite index, and generated by a finite set of words, W1, W2, . . . , Wt. Let W be any word in G. Our problem is the following. Can we find a new set of generators for H, together with a set of representatives h1 = 1, h2, . . . , hu of the right cosets of H (i.e. G = H1 + Hh2 + . . . + Hhu) such that W can be expressed in the form W = Uhp, where U is a word in .


2001 ◽  
Vol 11 (06) ◽  
pp. 627-672 ◽  
Author(s):  
JOHN RHODES ◽  
BENJAMIN STEINBERG

Building on the now generally accepted thesis that profinite semigroups are important to the study of finite semigroups, this paper proposes to apply various of the techniques, already used in studying algebraic semigroups, to profinite semigroups. The goal in mind is to understand free profinite semigroups on a finite set. To do this we define profinite varieties. We then introduce expansions of profinite semigroups, giving examples of several classes of such expansions. These expansions will then be useful in studying various structural properties of relatively free profinite semigroups, since these semigroups will be fixed points of certain expansions. This study also requires a look at profinite categories, semigroupoids, and Cayley graphs, all of which we handle in turn. We also study the structure of the minimal ideal of relatively free profinite semigroups showing, in particular, that the minimal ideal of the free profinite semigroup on a finite set with more than two generators is not a relatively free profinite completely simple semigroup, as well as some generalizations to related pseudovarieties.


1999 ◽  
Vol 42 (1) ◽  
pp. 113-125 ◽  
Author(s):  
Marcel Jackson

Let S be a finite semigroup, A be a given subset of S and L, R, H, D and J be Green's equivalence relations. The problem of determining whether there exists a supersemigroup T of S from the class of all semigroups or from the class of finite semigroups, such that A lies in an L or R-class of T has a simple and well known solution (see for example [7], [8] or [3]). The analogous problem for J or D relations is trivial if T is of arbitrary size, but undecidable if T is required to be finite [4] (even if we restrict ourselves to the case |A| = 2 [6]). We show that for the relation H, the corresponding problem is undecidable in both the class of finite semigroups (answering Problem 1 of [9]) and in the class of all semigroups, extending related results obtained by M. V. Sapir in [9]. An infinite semigroup with a subset never lying in a H-class of any embedding semigroup is known and, in [9], the existence of a finite semigroup with this property is established. We present two eight element examples of such semigroups as well as other examples satisfying related properties.


Sign in / Sign up

Export Citation Format

Share Document