The word problem for cancellation semigroups with zero

1984 ◽  
Vol 49 (1) ◽  
pp. 184-191 ◽  
Author(s):  
Yuri Gurevich ◽  
Harry R. Lewis

By theword problemfor some class of algebraic structures we mean the problem of determining, given a finite setEof equations between words (i.e. terms) and an additional equationx=y, whetherx=ymust hold in all structures satisfying each member ofE. In 1947 Post [P] showed the word problem for semigroups to be undecidable. This result was strengthened in 1950 by Turing, who showed the word problem to be undecidable forcancellation semigroups,i.e. semigroups satisfying thecancellation propertyNovikov [N] eventually showed the word problem for groups to be undecidable.(Many flaws in Turing's proof were corrected by Boone [B]. Even after his corrections, at least one problem remains; the sentence on line 16 of p. 502 of [T] does not follow if one relation is principal and the other is a commutation relation. A corrected and somewhat simplified version of Turing's proof can be built on the construction given here.)In 1966 Gurevich [G] showed the word problem to be undecidable forfinitesemigroups. However, this result on finite structures has not been extended to cancellation semigroups or groups; indeed it is easy to see that a finite cancellation semigroup is a group, so both questions are the same. We do not here settle the word problem for finite groups, but we do show that the word problem is undecidable for finite semigroups with zero (that is, having an element 0 such thatx0 = 0x= 0 for allx) satisfying an approximation to the cancellation property (1).

1992 ◽  
Vol 57 (1) ◽  
pp. 179-192 ◽  
Author(s):  
Douglas Albert ◽  
Robert Baldinger ◽  
John Rhodes

In 1947 E. Post [28] and A. A. Markov [18] independently proved the undecidability of the word problem (or the problem of deducibility of relations) for semigroups. In 1968 V. L. Murskil [23] proved the undecidability of the identity problem (or the problem of deducibility of identities) in semigroups.If we slightly generalize the statement of these results we can state many related results in the literature and state our new results proved here. Let V denote either a (Birkhoff) variety of semigroups or groups or a pseudovariety of finite semigroups. By a very well-known theorem a (Birkhoff) variety is defined by equations or equivalently closed under substructure, surmorphisms and all products; see [7]. It is also well known that V is a pseudovariety of finite semigroups iff V is closed under substructure, surmorphism and finite products, or, equivalently, determined eventually by equations w1 = w1′, w2 = w2′, w3 = w3′,… (where the finite semigroup S eventually satisfies these equations iff there exists an n, depending on S, such that S satisfies Wj = Wj′ for j ≥ n). See [8] and [29]. All semigroups form a variety while all finite semigroups form a pseudovariety.We now consider a table (see the next page). In it, for example, the box denoting the “word” (identity) problem for the psuedovariety V” means, given a finite set of relations (identities) E and a relation (identity) u = ν, the problem of whether it is decidable that E implies u = ν inside V.


2011 ◽  
Vol 21 (07) ◽  
pp. 1179-1194 ◽  
Author(s):  
N. D. GILBERT ◽  
R. NOONAN HEALE

We generalize the word problem for groups, the formal language of all words in the generators that represent the identity, to inverse monoids. In particular, we introduce the idempotent problem, the formal language of all words representing idempotents, and investigate how the properties of an inverse monoid are related to the formal language properties of its idempotent problem. We show that if an inverse monoid is either E-unitary or has a finite set of idempotents, then its idempotent problem is regular if and only if the inverse monoid is finite. We also give examples of inverse monoids with context-free idempotent problems, including all Bruck–Reilly extensions of finite groups.


Author(s):  
John F. Mansfield ◽  
Douglas C. Crawford

A method has been developed that allows on-line measurement of the thickness of crystalline materials in the analytical electron microscope. Two-beam convergent beam electron diffraction (CBED) patterns are digitized from a JEOL 2000FX electron microscope into an Apple Macintosh II microcomputer via a Gatan #673 CCD Video Camera and an Imaging Systems Technology Video 1000 frame-capture board. It is necessary to know the lattice parameters of the sample since measurements are made of the spacing of the diffraction discs in order to calibrate the pattern. The sample thickness is calculated from measurements of the spacings of the fringes that are seen in the diffraction discs. This technique was pioneered by Kelly et al, who used the two-beam dynamic theory of MacGillavry relate the deviation parameter (Si) of the ith fringe from the exact Bragg condition to the specimen thickness (t) with the equation:Where ξg, is the extinction distance for that reflection and ni is an integer.


2021 ◽  
Vol 82 (2) ◽  
Author(s):  
Robin Hirsch ◽  
Jaš Šemrl

AbstractThe motivation for using demonic calculus for binary relations stems from the behaviour of demonic turing machines, when modelled relationally. Relational composition (; ) models sequential runs of two programs and demonic refinement ($$\sqsubseteq $$ ⊑ ) arises from the partial order given by modeling demonic choice ($$\sqcup $$ ⊔ ) of programs (see below for the formal relational definitions). We prove that the class $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) of abstract $$(\le , \circ )$$ ( ≤ , ∘ ) structures isomorphic to a set of binary relations ordered by demonic refinement with composition cannot be axiomatised by any finite set of first-order $$(\le , \circ )$$ ( ≤ , ∘ ) formulas. We provide a fairly simple, infinite, recursive axiomatisation that defines $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) . We prove that a finite representable $$(\le , \circ )$$ ( ≤ , ∘ ) structure has a representation over a finite base. This appears to be the first example of a signature for binary relations with composition where the representation class is non-finitely axiomatisable, but where the finite representation property holds for finite structures.


1991 ◽  
Vol 110 (3) ◽  
pp. 569-579 ◽  
Author(s):  
J. Devlin

In [6], we considered the equationwhere z ∈ ℂ and the pi are real-valued functions; abstract word-problem concepts and techniques were applied to the local problem of the bifurcation of periodic solutions out of the solution Z ≡ 0. This paper is a sequel to [6]; we present an extension of certain concepts given in that paper, and give a global version of some of our word-problem results.


1995 ◽  
Vol 15 (1) ◽  
pp. 77-97 ◽  
Author(s):  
Irene Hueter ◽  
Steven P. Lalley

Let A1, A2,…,Ak be a finite set of contractive, affine, invertible self-mappings of R2. A compact subset Λ of R2 is said to be self-affine with affinitiesA1, A2,…,Ak ifIt is known [8] that for any such set of contractive affine mappings there is a unique (compact) SA set with these affinities. When the affine mappings A1, A2,…,Ak are similarity transformations, the set Λ is said to be self-similar. Self-similar sets are well understood, at least when the images Ai(Λ) have ‘small’ overlap: there is a simple and explicit formula for the Hausdorff and box dimensions [12, 10]; these are always equal; and the δ-dimensional Hausdorff measure of such a set (where δ is the Hausdorff dimension) is always positive and finite.


1970 ◽  
Vol 22 (1) ◽  
pp. 36-40 ◽  
Author(s):  
J. W. Wamsley

Mennicke (2) has given a class of three-generator, three-relation finite groups. In this paper we present a further class of three-generator, threerelation groups which we show are finite.The groups presented are defined as:with α|γ| ≠ 1, β|γ| ≠ 1, γ ≠ 0.We prove the following result.THEOREM 1. Each of the groups presented is a finite soluble group.We state the following theorem proved by Macdonald (1).THEOREM 2. G1(α, β, 1) is a finite nilpotent group.1. In this section we make some elementary remarks.


1981 ◽  
Vol 33 (4) ◽  
pp. 893-900 ◽  
Author(s):  
J. A. Gerhard ◽  
Mario Petrich

A semigroup which is a union of groups is said to be completely regular. If in addition the idempotents form a subsemigroup, the semigroup is said to be orthodox and is called an orthogroup. A completely regular semigroup S is provided in a natural way with a unary operation of inverse by letting a-l for a ∈ S be the group inverse of a in the maximal subgroup of S to which a belongs. This unary operation satisfies the identities(1)(2)(3)In fact a completely regular semigroup can be defined as a unary semigroup (a semigroup with an added unary operation) satisfying these identities. An orthogroup can be characterized as a completely regular semigroup satisfying the additional identity(4)


1959 ◽  
Vol 11 ◽  
pp. 59-60 ◽  
Author(s):  
Hirosi Nagao

Let G be a finite group of order g, andbe an absolutely irreducible representation of degree fμ over a field of characteristic zero. As is well known, by using Schur's lemma (1), we can prove the following orthogonality relations for the coefficients :1It is easy to conclude from (1) the following orthogonality relations for characters:whereand is 1 or 0 according as t and s are conjugate in G or not, and n(t) is the order of the normalize of t.


1974 ◽  
Vol 26 (4) ◽  
pp. 769-782 ◽  
Author(s):  
Anke Dietze ◽  
Mary Schaps

The use of computers to investigate groups has mainly been restricted to finite groups. In this work, a method is given for finding all subgroups of finite index in a given group, which works equally well for finite and for infinite groups. The basic object of study is the finite set of cosets. §2 reviews briefly the representation of a subgroup by permutations of its cosets, introduces the concept of normal coset numbering, due independently to M. Schaps and C. Sims, and describes a version of the Todd-Coxeter algorithm. §3 contains a version due to A. Dietze of a process which was communicated to J. Neubuser by C. Sims, as well as a proof that the process solves the problem stated in the title. A second such process, developed independently by M. Schaps, is described in §4. §5 gives a method for classifying the subgroups by conjugacy, and §6, a suggestion for generalization of the methods to permutation and matrix groups.


Sign in / Sign up

Export Citation Format

Share Document