Abacus logic: The lattice of quantum propositions as the poset of a theory

1994 ◽  
Vol 59 (2) ◽  
pp. 501-515
Author(s):  
Othman Qasim Malhas

AbstractWith a certain graphic interpretation in mind, we say that a function whose value at every point in its domain is a nonempty set of real numbers is an Abacus. It is shown that to every collection C of abaci there corresponds a logic, called an abacus logic, i.e.. a certain set of propositions partially ordered by generalized implication. It is also shown that to every collection C of abaci there corresponds a theory Jc in a classical propositional calculus such that the abacus logic determined by C is isomorphic to the poset of Jc. Two examples are given. In both examples abacus logic is a lattice in which there happens to be an operation of orthocomplementation. In the first example abacus logic turns out to be the Lindenbaum algebra of Jc. In the second example abacus logic is a lattice isomorphic to the ortholattice of subspaces of a Hilbert space. Thus quantum logic can be regarded as an abacus logic. Without suggesting “hidden variables” it is finally shown that the Lindenbaum algebra of the theory in the second example is a subalgebra of the abacus logic B of the kind studied in example 1. It turns out that the “classical observables” associated with B and the “quantum observables” associated with quantum logic are not unrelated. The value of a classical observable contains, in coded form, information about the “uncertainty” of a quantum observable. This information is retrieved by decoding the value of the corresponding classical observable.

2020 ◽  
Vol 2 (4) ◽  
pp. 600-616
Author(s):  
Andrea Oldofredi

It is generally accepted that quantum mechanics entails a revision of the classical propositional calculus as a consequence of its physical content. However, the universal claim according to which a new quantum logic is indispensable in order to model the propositions of every quantum theory is challenged. In the present essay, we critically discuss this claim by showing that classical logic can be rehabilitated in a quantum context by taking into account Bohmian mechanics. It will be argued, indeed, that such a theoretical framework provides the necessary conceptual tools to reintroduce a classical logic of experimental propositions by virtue of its clear metaphysical picture and its theory of measurement. More precisely, it will be shown that the rehabilitation of a classical propositional calculus is a consequence of the primitive ontology of the theory, a fact that is not yet sufficiently recognized in the literature concerning Bohmian mechanics. This work aims to fill this gap.


1987 ◽  
Vol 52 (3) ◽  
pp. 834-841 ◽  
Author(s):  
Othman Qasim Malhas

AbstractIn much the same way that it is possible to construct a model of hyperbolic geometry in the Euclidean plane, it is possible to model quantum logic within the classical propositional calculus.


1972 ◽  
Vol 27 (8-9) ◽  
pp. 1358-1362 ◽  
Author(s):  
P. Mittelstaedt

Abstract In the lattice of subspaces of the Hilbert space elements can be defined which may be con-sidered as generalized implications. It is shown, that these elements satisfy the most important relations which are known to be valid for the classical implication. These results seem to justify the interpretation of this lattice as a propositional calculus sometime called quantum logic.


2012 ◽  
Vol 09 (02) ◽  
pp. 1260005 ◽  
Author(s):  
GIANNI CASSINELLI ◽  
PEKKA LAHTI

A classical problem in axiomatic quantum mechanics is deducing a Hilbert space realization for a quantum logic that admits a vector space coordinatization of the Piron–McLaren type. Our aim is to show how a theorem of M. Solér [Characterization of Hilbert spaces by orthomodular spaces, Comm. Algebra23 (1995) 219–243.] can be used to get a (partial) solution of this problem. We first derive a generalization of the Wigner theorem on symmetry transformations that holds already in the Piron–McLaren frame. Then we investigate which conditions on the quantum logic allow the use of Solér's theorem in order to obtain a Hilbert space solution for the coordinatization problem.


1972 ◽  
Vol 27 (1) ◽  
pp. 7-22 ◽  
Author(s):  
A. Rieckers

Abstract The representation of infinitesimal generators corresponding to the group representation dis-cussed in the preceding paper is analyzed in the Hilbert space of functionals over real test functions. Explicit expressions for these unbounded operators are constructed by means of the functio-nal derivative and by canonical operator pairs on dense domains. The behaviour under certain basis transformations is investigated, also for non-Hermitian generators. For the Hermitian ones a common, dense domain is set up where they are essentially selfadjoint. After having established a one-to-one correspondence between the real test function space and a complex Hilbert space the theory of quantum observables is applied to the functional version of a relativistic quantum field theory.


Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 867
Author(s):  
Gregg Jaeger

The circumstances of measurement have more direct significance in quantum than in classical physics, where they can be neglected for well-performed measurements. In quantum mechanics, the dispositions of the measuring apparatus-plus-environment of the system measured for a property are a non-trivial part of its formalization as the quantum observable. A straightforward formalization of context, via equivalence classes of measurements corresponding to sets of sharp target observables, was recently given for sharp quantum observables. Here, we show that quantum contextuality, the dependence of measurement outcomes on circumstances external to the measured quantum system, can be manifested not only as the strict exclusivity of different measurements of sharp observables or valuations but via quantitative differences in the property statistics across simultaneous measurements of generalized quantum observables, by formalizing quantum context via coexistent generalized observables rather than only its subset of compatible sharp observables. Here, the question of whether such quantum contextuality follows from basic quantum principles is then addressed, and it is shown that the Principle of Indeterminacy is sufficient for at least one form of non-trivial contextuality. Contextuality is thus seen to be a natural feature of quantum mechanics rather than something arising only from the consideration of impossible measurements, abstract philosophical issues, hidden-variables theories, or other alternative, classical models of quantum behavior.


1957 ◽  
Vol 22 (2) ◽  
pp. 176-186 ◽  
Author(s):  
E. J. Lemmon

The main aims of this paper are firstly to present new and simpler postulate sets for certain well-known systems of modal logic, and secondly, in the light of these results, to suggest some new or newly formulated calculi, capable of interpretation as systems of epistemic or deontic modalities. The symbolism throughout is that of [9] (see especially Part III, Chapter I). In what follows, by a Lewis modal system is meant a system which (i) contains the full classical propositional calculus, (ii) is contained in the Lewis system S5, (iii) admits of the substitutability of tautologous equivalents, (iv) possesses as theses the four formulae:We shall also say that a system Σ1 is stricter than a system Σ2, if both are Lewis modal systems and Σ1 is contained in Σ2 but Σ2 is not contained in Σ1; and we shall call Σ1absolutely strict, if it possesses an infinity of irreducible modalities. Thus, the five systems of Lewis in [5], S1, S2, S3, S4, and S5, are all Lewis modal systems by this definition; they are in an order of decreasing strictness from S1 to S5; and S1 and S2 alone are absolutely strict.


Author(s):  
A. G. White ◽  
M. Pereira de Almeida ◽  
M. Barbieri ◽  
D. N. Biggerstaff ◽  
R. B. Dalton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document