scholarly journals All science as rigorous science: the principle of constructive mathematizability of any theory

2020 ◽  
Author(s):  
Vasil Dinev Penchev

A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality.The main statement is formulated as follows: Any scientific theory admits isomorphism to some mathematical structure in a way constructive (that is not as a proof of “pure existence” in a mathematical sense).Its investigation needs philosophical means. Husserl’s phenomenology is what is used, and then the conception of “bracketing reality” is modelled to generalize Peano arithmetic in its relation to set theory in the foundation of mathematics. The obtained model is equivalent to the generalization of Peano arithmetic by means of replacing the axiom of induction with that of transfinite induction.The sketch of the proof is organized in five steps: (1) a generalization of epoché; (2) involving transfinite induction in the transition between Peano arithmetic and set theory; (3) discussing the finiteness of Peano arithmetic; (4) applying transfinite induction to Peano arithmetic; (5) discussing an arithmetical model of reality.Accepting or rejecting the principle, two kinds of mathematics appear differing from each other by its relation to reality. Accepting the principle, mathematics has to include reality within itself in a kind of Pythagoreanism. These two kinds are called in paper correspondingly Hilbert mathematics and Gödel mathematics. The sketch of the proof of the principle demonstrates that the generalization of Peano arithmetic as above can be interpreted as a model of Hilbert mathematics into Gödel mathematics therefore showing that the former is not less consistent than the latter, and the principle is an independent axiom.The present paper follows a pathway grounded on Husserl’s phenomenology and “bracketing reality” to achieve the generalized arithmetic necessary for the principle to be founded in alternative ontology, in which there is no reality external to mathematics: reality is included within mathematics. That latter mathematics is able to self-found itself and can be called Hilbert mathematics in honour of Hilbert’s program for self-founding mathematics on the base of arithmetic.The principle of universal mathematizability is consistent to Hilbert mathematics, but not to Gödel mathematics. Consequently, its validity or rejection would resolve the problem which mathematics refers to our being; and vice versa: the choice between them for different reasons would confirm or refuse the principle as to the being.An information interpretation of Hilbert mathematics is involved. It is a kind of ontology of information. The Schrödinger equation in quantum mechanics is involved to illustrate that ontology. Thus the problem which of the two mathematics is more relevant to our being (rather than reality for reality is external only to Gödel mathematics) is discussed again in a new wayA few directions for future work can be: a rigorous formal proof of the principle as an independent axiom; the further development of information ontology consistent to both kinds of mathematics, but much more natural for Hilbert mathematics; the development of the information interpretation of quantum mechanics as a mathematical one for information ontology and thus Hilbert mathematics; the description of consciousness in terms of information ontology.

2020 ◽  
Author(s):  
Vasil Dinev Penchev

A principle, according to which any scientific theory can be mathematized, is investigated. That theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality.Its investigation needs philosophical means. Husserl’s phenomenology is what is used, and then the conception of “bracketing reality” is modelled to generalize Peano arithmetic in its relation to set theory in the foundation of mathematics. The obtained model is equivalent to the generalization of Peano arithmetic by means of replacing the axiom of induction with that of transfinite induction.A comparison to Mach’s doctrine is used to be revealed the fundamental and philosophical reductionism of Husserl’s phenomenology leading to a kind of Pythagoreanism in the final analysis.Accepting or rejecting the principle, two kinds of mathematics appear differing from each other by its relation to reality. Accepting the principle, mathematics has to include reality within itself in a kind of Pythagoreanism. These two kinds are called in paper correspondingly Hilbert mathematics and Gödel mathematics. The sketch of the proof of the principle demonstrates that the generalization of Peano arithmetic as above can be interpreted as a model of Hilbert mathematics into Gödel mathematics therefore showing that the former is not less consistent than the latter, and the principle is an independent axiom.An information interpretation of Hilbert mathematics is involved. It is a kind of ontology of information. Thus the problem which of the two mathematics is more relevant to our being (rather than reality for reality is external only to Gödel mathematics) is discussed. An information interpretation of the Schrödinger equation is involved to illustrate the above problem.


2020 ◽  
Author(s):  
Vasil Penchev

<div>Husserl’s phenomenology is what is used, and then the conception of “bracketing reality” is modelled to generalize Peano arithmetic in its relation to set theory in the foundation of mathematics. The obtained model is equivalent to the generalization of Peano arithmetic by means of replacing the axiom of induction with that of transfinite induction.</div><div><br></div><div>A comparison to Mach’s doctrine is used to be revealed the fundamental and philosophical reductionism of Husserl’s phenomenology leading to a kind of Pythagoreanism in the final analysis</div>


2020 ◽  
Author(s):  
Vasil Dinev Penchev

Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. This paper investigates both conditions and philosophical background necessary for that modification. The main conclusion is that the concept of infinity as underlying contemporary mathematics cannot be reduced to a single Peano arithmetic, but to at least two ones independent of each other. Intuitionism, quantum mechanics, and Gentzen’s approaches to completeness an even Hilbert’s finitism can be unified from that viewpoint. Mathematics may found itself by a way of finitism complemented by choice. The concept of information as the quantity of choices underlies that viewpoint. Quantum mechanics interpretable in terms of information and quantum information is inseparable from mathematics and its foundation.


2020 ◽  
Author(s):  
Vasil Penchev

<div>Husserl’s phenomenology is what is used, and then the conception of “bracketing reality” is modelled to generalize Peano arithmetic in its relation to set theory in the foundation of mathematics. The obtained model is equivalent to the generalization of Peano arithmetic by means of replacing the axiom of induction with that of transfinite induction.</div><div><br></div><div>A comparison to Mach’s doctrine is used to be revealed the fundamental and philosophical reductionism of Husserl’s phenomenology leading to a kind of Pythagoreanism in the final analysis</div>


2020 ◽  
Author(s):  
Vasil Dinev Penchev

The concept of quantum information is introduced as both normed superposition of two orthogonal subspaces of the separable complex Hilbert space and invariance of Hamilton and Lagrange representation of any mechanical system. The base is the isomorphism of the standard introduction and the representation of a qubit to a 3D unit ball, in which two points are chosen.The separable complex Hilbert space is considered as the free variable of quantum information and any point in it (a wave function describing a state of a quantum system) as its value as the bound variable.A qubit is equivalent to the generalization of ‘bit’ from the set of two equally probable alternatives to an infinite set of alternatives. Then, that Hilbert space is considered as a generalization of Peano arithmetic where any unit is substituted by a qubit and thus the set of natural number is mappable within any qubit as the complex internal structure of the unit or a different state of it. Thus, any mathematical structure being reducible to set theory is representable as a set of wave functions and a subspace of the separable complex Hilbert space, and it can be identified as the category of all categories for any functor represents an operator transforming a set (or subspace) of the separable complex Hilbert space into another. Thus, category theory is isomorphic to the Hilbert-space representation of set theory &amp; Peano arithmetic as above.Given any value of quantum information, i.e. a point in the separable complex Hilbert space, it always admits two equally acceptable interpretations: the one is physical, the other is mathematical. The former is a wave function as the exhausted description of a certain state of a certain quantum system. The latter chooses a certain mathematical structure among a certain category. Thus there is no way to be distinguished a mathematical structure from a physical state for both are described exhaustedly as a value of quantum information. This statement in turn can be utilized to be defined quantum information by the identity of any mathematical structure to a physical state, and also vice versa. Further, that definition is equivalent to both standard definition as the normed superposition and invariance of Hamilton and Lagrange interpretation of mechanical motion introduced in the beginning of the paper.Then, the concept of information symmetry can be involved as the symmetry between three elements or two pairs of elements: Lagrange representation and each counterpart of the pair of Hamilton representation. The sense and meaning of information symmetry may be visualized by a single (quantum) bit and its interpretation as both (privileged) reference frame and the symmetries 𝑈𝑈(1), 𝑆𝑆𝑆 (2), and 𝑆𝑆𝑆 (3) of the Standard model.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

A concept of formal transcendentalism is utilized. The fundamental and definitive property of the totality suggests for “the totality to be all”, thus, its externality (unlike any other entity) is contained within it. This generates a fundamental (or philosophical) “doubling” of anything being referred to the totality, i.e. considered philosophically. Thus, that doubling as well as transcendentalism underlying it can be interpreted formally as an elementary choice such as a bit of information and a quantity corresponding to the number of elementary choices to be defined. This is the quantity of information defined both transcendentally and formally and thus, philosophically and mathematically. If one defines information specifically, as an elementary choice between finiteness (or mathematically, as any natural number of Peano arithmetic) and infinity (i.e. an actually infinite set in the meaning of set theory), the quantity of quantum information is defined. One can demonstrate that the so-defined quantum information and quantum information standardly defined by quantum mechanics are equivalent to each other. The equivalence of the axiom of choice and the well-ordering “theorem” is involved. It can be justified transcendentally as well, in virtue of transcendental equivalence implied by the totality. Thus, all can be considered as temporal as far anything possesses such a temporal counterpart necessarily. Formally defined, the frontier of time is the current choice now, a bit of information, furthermore interpretable as a qubit of quantum information.


2019 ◽  
Vol 25 (1) ◽  
pp. 101-124
Author(s):  
MARIA HÄMEEN-ANTTILA

AbstractIn 1936, Gerhard Gentzen published a proof of consistency for Peano Arithmetic using transfinite induction up to ε0, which was considered a finitistically acceptable procedure by both Gentzen and Paul Bernays. Gentzen’s method of arithmetising ordinals and thus avoiding the Platonistic metaphysics of set theory traces back to the 1920s, when Bernays and David Hilbert used the method for an attempted proof of the Continuum Hypothesis. The idea that recursion on higher types could be used to simulate the limit-building in transfinite recursion seems to originate from Bernays. The main difficulty, which was already discovered in Gabriel Sudan’s nearly forgotten paper of 1927, was that measuring transfinite ordinals requires stronger methods than representing them. This paper presents a historical account of the idea of nominalistic ordinals in the context of the Hilbert Programme as well as Gentzen and Bernays’ finitary interpretation of transfinite induction.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

The concepts of choice, negation, and infinity are considered jointly. The link is the quantity of information interpreted as the quantity of choices measured in units of elementary choice: a bit is an elementary choice between two equally probable alternatives. “Negation” supposes a choice between it and confirmation. Thus quantity of information can be also interpreted as quantity of negations. The disjunctive choice between confirmation and negation as to infinity can be chosen or not in turn: This corresponds to set-theory or intuitionist approach to the foundation of mathematics and to Peano or Heyting arithmetic. Quantum mechanics can be reformulated in terms of information introducing the concept and quantity of quantum information. A qubit can be equivalently interpreted as that generalization of “bit” where the choice is among an infinite set or series of alternatives. The complex Hilbert space can be represented as both series of qubits and value of quantum information. The complex Hilbert space is that generalization of Peano arithmetic where any natural number is substituted by a qubit. “Negation”, “choice”, and “infinity” can be inherently linked to each other both in the foundation of mathematics and quantum mechanics by the meditation of “information” and “quantum information”.


2018 ◽  
Vol 96 (7) ◽  
pp. 599-605 ◽  
Author(s):  
Lou Massa ◽  
Chérif F. Matta

Quantum crystallography (QCr) is a branch of crystallography aimed at obtaining the complete quantum mechanics of a crystal given its X-ray scattering data. The fundamental value of obtaining an electron density matrix that is N-representable is that it ensures consistency with an underlying properly antisymmetrized wavefunction, a requirement of quantum mechanical validity. However, X-ray crystallography has progressed in an impressive way for decades based only upon the electron density obtained from the X-ray scattering data without the imposition of the mathematical structure of quantum mechanics. Therefore, one may perhaps ask regarding N-representability “why bother?” It is the purpose of this article to answer such a question by succinctly describing the advantage that is opened by QCr.


Author(s):  
Howard Stein

Dedekind is known chiefly, among philosophers, for contributions to the foundations of the arithmetic of the real and the natural numbers. These made available for the first time a systematic and explicit way, starting from very general notions (which Dedekind himself regarded as belonging to logic), to ground the differential and integral calculus without appeal to geometric ‘intuition’. This work also forms a pioneering contribution to set theory (further advanced in Dedekind’s correspondence with Georg Cantor) and to the general notion of a ‘mathematical structure’. Dedekind’s foundational work had a close connection with his advancement of substantive mathematical knowledge, particularly in the theories of algebraic numbers and algebraic functions. His achievements in these fields make him one of the greatest mathematicians of the nineteenth century.


Sign in / Sign up

Export Citation Format

Share Document