Zorn's lemma and complete Boolean algebras in intuitionistic type theories

1997 ◽  
Vol 62 (4) ◽  
pp. 1265-1279 ◽  
Author(s):  
J. L. Bell

AbstractWe analyze Zorn's Lemma and some of its consequences for Boolean algebras in a constructive setting. We show that Zorn's Lemma is persistent in the sense that, if it holds in the underlying set theory, in a properly stated form it continues to hold in all intuitionistic type theories of a certain natural kind. (Observe that the axiom of choice cannot be persistent in this sense since it implies the law of excluded middle.) We also establish the persistence of some familiar results in the theory of (complete) Boolean algebras—notably, the proposition that every complete Boolean algebra is an absolute subretract. This (almost) resolves a question of Banaschewski and Bhutani as to whether the Sikorski extension theorem for Boolean algebras is persistent.

1983 ◽  
Vol 48 (3) ◽  
pp. 841-846 ◽  
Author(s):  
J.L. Bell

The Sikorski Extension Theorem [6] states that, for any Boolean algebra A and any complete Boolean algebra B, any homomorphism of a subalgebra of A into B can be extended to the whole of A. That is,Inj: Any complete Boolean algebra is injective (in the category of Boolean algebras).The proof of Inj uses the axiom of choice (AC); thus the implication AC → Inj can be proved in Zermelo-Fraenkel set theory (ZF). On the other hand, the Boolean prime ideal theoremBPI: Every Boolean algebra contains a prime ideal (or, equivalently, an ultrafilter)may be equivalently stated as:The two element Boolean algebra 2 is injective,and so the implication Inj → BPI can be proved in ZF.In [3], Luxemburg surmises that this last implication cannot be reversed in ZF. It is the main purpose of this paper to show that this surmise is correct. We shall do this by showing that Inj implies that BPI holds in every Boolean extension of the universe of sets, and then invoking a recent result of Monro [5] to the effect that BPI does not yield this conclusion.


1978 ◽  
Vol 43 (4) ◽  
pp. 635-642 ◽  
Author(s):  
Petr Štěpánek

We shall describe Boolean extensions of models of set theory with the axiom of choice in which cardinals are collapsed by mappings definable from parameters in the ground model. In particular, starting from the constructible universe, we get Boolean extensions in which constructible cardinals are collapsed by ordinal definable sets.Let be a transitive model of set theory with the axiom of choice. Definability of sets in the generic extensions of is closely related to the automorphisms of the corresponding Boolean algebra. In particular, if G is an -generic ultrafilter on a rigid complete Boolean algebra C, then every set in [G] is definable from parameters in . Hence if B is a complete Boolean algebra containing a set of forcing conditions to collapse some cardinals in , it suffices to construct a rigid complete Boolean algebra C, in which B is completely embedded. If G is as above, then [G] satisfies “every set is -definable” and the inner model [G ∩ B] contains the collapsing mapping determined by B. To complete the result, it is necessary to give some conditions under which every cardinal from [G ∩ B] remains a cardinal in [G].The absolutness is granted for every cardinal at least as large as the saturation of C. To keep the upper cardinals absolute, it often suffices to construct C with the same saturation as B. It was shown in [6] that this is always possible, namely, that every Boolean algebra can be completely embedded in a rigid complete Boolean algebra with the same saturation.


1987 ◽  
Vol 52 (2) ◽  
pp. 374-387 ◽  
Author(s):  
T. E. Forster

We shall be concerned here with weak axiomatic systems of set theory with a universal set. The language in which they are expressed is that of set theory—two primitive predicates, = and ϵ, and no function symbols (though some function symbols will be introduced by definitional abbreviation). All the theories will have stratified axioms only, and they will all have Ext (extensionality: (∀x)(∀y)(x = y· ↔ ·(∀z)(z ϵ x ↔ z ϵ y))). In fact, in addition to extensionality, they have only axioms saying that the universe is closed under certain set-theoretic operations, viz. all of the formand these will always include singleton, i.e., ι′x exists if x does (the iota notation for singleton, due to Russell and Whitehead, is used here to avoid confusion with {x: Φ}, set abstraction), and also x ∪ y, x ∩ y and − x (the complement of x). The system with these axioms is called NF2 in the literature (see [F]). The other axioms we consider will be those giving ⋃x, ⋂x, {y: y ⊆x} and {y: x ⊆ y}. We will frequently have occasion to bear in mind that 〈 V, ⊆ 〉 is a Boolean algebra in any theory extending NF2. There is no use of the axiom of choice at any point in this paper. Since the systems with which we will be concerned exhibit this feature of having, in addition to extensionality, only axioms stating that V is closed under certain operations, we will be very interested in terms of the theories in question. A T-term, for T such a theory, is a thing (with no free variables) built up from V or ∧ by means of the T-operations, which are of course the operations that the axioms of T say the universe is closed under.


Author(s):  
Alexander R. Pruss

This is a mainly technical chapter concerning the causal embodiment of the Axiom of Choice from set theory. The Axiom of Choice powered a construction of an infinite fair lottery in Chapter 4 and a die-rolling strategy in Chapter 5. For those applications to work, there has to be a causally implementable (though perhaps not compatible with our laws of nature) way to implement the Axiom of Choice—and, for our purposes, it is ideal if that involves infinite causal histories, so the causal finitist can reject it. Such a construction is offered. Moreover, other paradoxes involving the Axiom of Choice are given, including two Dutch Book paradoxes connected with the Banach–Tarski paradox. Again, all this is argued to provide evidence for causal finitism.


2010 ◽  
Vol 75 (3) ◽  
pp. 996-1006 ◽  
Author(s):  
Kyriakos Keremedis ◽  
Eleftherios Tachtsis

AbstractWe establish the following results:1. In ZF (i.e., Zermelo-Fraenkel set theory minus the Axiom of Choice AC), for every set I and for every ordinal number α ≥ ω, the following statements are equivalent:(a) The Tychonoff product of ∣α∣ many non-empty finite discrete subsets of I is compact.(b) The union of ∣α∣ many non-empty finite subsets of I is well orderable.2. The statement: For every infinite set I, every closed subset of the Tychonoff product [0, 1]Iwhich consists offunctions with finite support is compact, is not provable in ZF set theory.3. The statement: For every set I, the principle of dependent choices relativised to I implies the Tychonoff product of countably many non-empty finite discrete subsets of I is compact, is not provable in ZF0 (i.e., ZF minus the Axiom of Regularity).4. The statement: For every set I, every ℵ0-sized family of non-empty finite subsets of I has a choice function implies the Tychonoff product of ℵ0many non-empty finite discrete subsets of I is compact, is not provable in ZF0.


Axioms ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 86 ◽  
Author(s):  
Dmitri Shakhmatov ◽  
Víctor Yañez

We give a “naive” (i.e., using no additional set-theoretic assumptions beyond ZFC, the Zermelo-Fraenkel axioms of set theory augmented by the Axiom of Choice) example of a Boolean topological group G without infinite separable pseudocompact subsets having the following “selective” compactness property: For each free ultrafilter p on the set N of natural numbers and every sequence ( U n ) of non-empty open subsets of G, one can choose a point x n ∈ U n for all n ∈ N in such a way that the resulting sequence ( x n ) has a p-limit in G; that is, { n ∈ N : x n ∈ V } ∈ p for every neighbourhood V of x in G. In particular, G is selectively pseudocompact (strongly pseudocompact) but not selectively sequentially pseudocompact. This answers a question of Dorantes-Aldama and the first listed author. The group G above is not pseudo- ω -bounded either. Furthermore, we show that the free precompact Boolean group of a topological sum ⨁ i ∈ I X i , where each space X i is either maximal or discrete, contains no infinite separable pseudocompact subsets.


1962 ◽  
Vol 20 ◽  
pp. 105-168 ◽  
Author(s):  
Katuzi Ono

The theory of mathematical objects, developed in this work, is a trial system intended to be a prototype of set theory. It concerns, with respect to the only one primitive notion “proto-membership”, with a field of mathematical objects which we shall hereafter simply call objects, it is a very simple system, because it assumes only one axiom scheme which is formally similar to the aussonderung axiom of set theory. We shall show that in our object theory we can construct a theory of sets which is stronger than the Zermelo set-theory [1] without the axiom of choice.


Sign in / Sign up

Export Citation Format

Share Document