Vertical Gradients of Water Potential and Tissue Water Relations in Sitka Spruce Trees Measured with the Pressure Chamber

1974 ◽  
Vol 11 (2) ◽  
pp. 637 ◽  
Author(s):  
J. Hellkvist ◽  
G. P. Richards ◽  
P. G. Jarvis

2001 ◽  
Vol 49 (4) ◽  
pp. 479 ◽  
Author(s):  
Beth R. Loveys ◽  
Brian R. Loveys ◽  
Stephen D. Tyerman

The water relations and leaf gas-exchange characteristics of the root hemiparasite quandong (Santalum acuminatum (R.Br.) A.DC) and its neighbouring plants were examined at three field sites in central Southern Australia. This paper examines the role of water potential and osmotic gradients in facilitating the movement of water from host plants to quandong. Quandong exhibited a significantly more negative water potential than the neighbouring plant species at both field sites during summer and winter. A significant proportion of the osmotic potential was accounted for by mannitol, Na + , K + and Cl - . A water potential difference of 1.7 MPa was maintained between quandong and its putative host over a measurement period of 24 h. Xylem sap and leaves of quandong contained considerable concentration (0.1–0.4 mol (kg tissue water) –1 ) of mannitol. Stomatal conductance and assimilation of quandong were lower than those of the neighbouring plants at both Middleback and Aldinga during both summer and winter measurements. Measurements of transpiration for quandong differed between the two sites. The lower transpirational water loss resulted in quandong at Middleback having an instantaneous water-use efficiency higher (0.13–2.2 µmol (CO 2 ) mmol –1 (H 2 O)) than the neighbouring plants. Daily sap flow and calculated hydraulic conductivity were not significantly different between quandong and putative host plant.



1968 ◽  
Vol 16 (3) ◽  
pp. 487 ◽  
Author(s):  
DJ Connor ◽  
BR Tunstall

The relationship between the relative water content and the water potential of the phyllodes in brigalow and mulga is compared. It is shown that brigalow phyllode tissue is more resistant to desiccation than that of mulga. This is of interest because mulga has previously been considered to represent an extreme in drought tolerance of Australian arid zone plants.



1988 ◽  
Vol 18 (1) ◽  
pp. 1-5 ◽  
Author(s):  
William C. Parker ◽  
Stephen G. Pallardy

The leaf and root tissue water relations of Quercusalba L., Quercusmacrocarpa Michx., and Quercusstellata Wang. seedlings before and after drought were examined to evaluate the occurrence and comparative extent of osmotic adjustment in seedlings of these species. Drought resulted in active osmotic adjustment in leaves of all three species, with decreases in osmotic potential at full tissue hydration and at the turgor loss point from 0.25 to 0.60 MPa. Active osmotic adjustment in Q. stellata, and increased root tissue elasticity in Q. macrocarpa and Q. alba, resulted in turgor loss of roots occurring at a water potential 0.36 to 0.66 MPa lower in drought-stressed than in well-watered seedlings. Species differed in tissue water relations only before drought, with Q. stellata exhibiting lower osmotic potentials than Q. alba and Q. macrocarpa. Estimates of the osmotic potential at full saturation were generally lower in leaves than in roots, but the osmotic potential at turgor loss was similar. Roots exhibited turgor loss at lower values of relative water content and experienced a more gradual decrease in water potential per unit water content during dehydration than did leaves. This response indicates greater relative tissue capacitance in roots than in leaves in these species.



1988 ◽  
Vol 36 (3) ◽  
pp. 239 ◽  
Author(s):  
J Whittington ◽  
R Sinclair

Mistletoes have frequently been found to transpire more rapidly than their hosts, and usually maintain a more negative water potential. Leaf water potential and diffusive conductance were monitored from the end of a dry summer (March) through a wet winter (to August) on the mistletoe Amyema miquelii (Lehm. ex Miq.) Tieghem and its host Eucalyptus fasciculosa F. Muell. The calculated transpiration rate of the mistletoe was greater than that of its host, but water potential data showed two unusual features. Firstly, the parasite pre-dawn water potential always remained lower than that of the host, regardless of the host's water status. Secondly, the parasite water potential during the day was on one occasion less negative than that of the host, i.e. a reverse gradient. Tissue water relations studies showed that A. miquelii leaves had more negative solute potential and a larger water capacitance than E. fasciculosa leaves. The unusual features of the seasonal data were explained in terms of a large haustorial resistance to water flow and hysteresis in the relationship between transpiration and water potential in the mistletoe leaf. This hysteresis was thought to be due to the contribution of stored leaf water to transpiration.



Author(s):  
B. L. BLAD ◽  
E. A. WALTER-SHEA


2004 ◽  
Vol 25 (1-2) ◽  
pp. 67-72 ◽  
Author(s):  
Marco Borghetti ◽  
F. Magnani ◽  
A. Fabrizio ◽  
A. Saracino


1983 ◽  
Vol 5 (1) ◽  
pp. 1-25 ◽  
Author(s):  
R. Milne ◽  
E.D. Ford ◽  
J.D. Deans


1982 ◽  
Vol 9 (5) ◽  
pp. 499 ◽  
Author(s):  
BD Millar

Pressure chamber evaluations of xylem sap pressure potential (P) and thermocouple psychrometric evaluations of average water potential (Ψl) in needles from both transpiring and non-transpiring pine trees (Pinus radiata D. Don) were compared in order to determine the relative accuracy and usefulness of these methods for assessing Ψl. Markedly different but linear P v. Ψl relationships were obtained for pine needles of different age and also for the case where resin exudation masked the xylem and led to a 'resin error'. Evidence suggests that these differences are mainly due to injection and resin errors in pressure chamber determinations totalling as much as 1 MPa (a 10 bar). The psychrometric method appears to be the much more accurate. Radial water potential gradients across leaves did not result in differences between evaluations of P and Ψl, at least in P. radiata. The need for multiple 'calibrations' of the pressure chamber and the fundamental uncertainty about the constancy of such calibrations on the one hand and the slowness of the excised-needle psychrometer on the other can restrict the usefulness of these methods.



1984 ◽  
Vol 32 (5) ◽  
pp. 495 ◽  
Author(s):  
BA Myers ◽  
TF Neales

Field observations of some parameters of the water relations of the two eucalypt species E. behriana and E. microcarpa in dry sclerophyll, mallee and woodland vegetation were made at three sites from 1980 to 1983. The mean ( n = 519) water potential measured at dawn (Ψdawn) was -3.07± 0.01 MPa and fluctuated seasonally with rainfall intensity over the range -2.0 ± 0, 1 to -4.4 ± 0.1 MPa ( n = 30). Both species behaved similarly and some osmotic adjustment took place. Mean leaf conductance (gs) varied between 0.151 ± 0.006 and 0.003 ± 0.001 mol m-2 s-1 . Maximum daily values of gs were linearly related to Ψdawn as it fluctuated seasonally. The slope of this linear regression was not significantly different from that relating these values of gs and Ψ, when both were measured concurrently. There were thus no indications of a distinction between the responses of gs to long- and short-term fluctuations of Ψ or of a threshold-type response of gs to Ψ. Field measurements indicated that gs was decreased at high values of vapour pressure difference (Δe). In laboratory studies with seedlings of the two species gs decreased from 0.5 to 0.1 mol m-2 s-I as Δe increased from 0.5 to 3.0 kPa. Leaf and canopy conductance were the predominant plant determinants of transpiration rate (Er) in this type of vegetation which has the capacity to restrict Et via the effect of water potential (Ψ) on gs and also by the response of gs to Δe. Some of the water relations parameters of E. behriana indicated that this species was better able to withstand drought than was E microcarpa.



Sign in / Sign up

Export Citation Format

Share Document