tissue elasticity
Recently Published Documents


TOTAL DOCUMENTS

331
(FIVE YEARS 69)

H-INDEX

40
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Adrien Méry ◽  
Artur Ruppel ◽  
Jean Révilloud ◽  
Martial Balland ◽  
Giovanni Cappello ◽  
...  

The mechanical properties of biological tissues are key to the regulation of their physical integrity and function. Although the application of external loading or biochemical treatments allows to estimate these properties globally, it remains problematic to assess how such external stimuli compare with internal, cell-generated contractions. Here we engineered 3D microtissues composed of optogenetically-modified fibroblasts encapsulated within collagen. Using light to control the activity of RhoA, a major regulator of cellular contractility, we induced local mechanical perturbation within 3D fibrous microtissues, while tracking in real time microtissue stress and strain. We thus investigated the dynamic regulation of light-induced, local contractions and their spatio-temporal propagation in microtissues. By comparing the evolution of stresses and strains upon stimulation, we demonstrated the potential of our technique for quantifying tissue elasticity and viscosity, before examining the possibility of using light to map local anisotropies in mechanically heterogeneous microtissues. Altogether, our results open an avenue to non-destructively chart the rheology of 3D tissues in real time, using their own constituting cells as internal actuators.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 302
Author(s):  
Weirong Ge ◽  
Graham Brooker ◽  
Ritu Mogra ◽  
Jon Hyett

The nonlinear mechanical behaviour of cervical tissue causes unpredictable changes in measured elastograms when pressure is applied. These uncontrolled variables prevent the reliable measurement of tissue elasticity in a clinical setting. Measuring the nonlinear properties of tissue is difficult due to the need for both shear modulus and strain to be taken simultaneously. A simulation-based method is proposed in this paper to resolve this. This study describes the nonlinear behaviour of cervical tissue using the hyperelastic material models of Demiray–Fung and Veronda–Westmann. Elastograms from 33 low-risk patients between 18 and 22 weeks gestation were obtained. The average measured properties of the hyperelastic material models are: Demiray–Fung—A1α = 2.07 (1.65–2.58) kPa, α = 6.74 (4.07–19.55); Veronda–Westmann—C1C2 = 4.12 (3.24–5.04) kPa, C2 = 4.86 (2.86–14.28). The Demiray–Fung and Veronda–Westmann models performed similarly in fitting to the elastograms with an average root mean square deviation of 0.41 and 0.47 ms−1, respectively. The use of hyperelastic material models to calibrate shear-wave speed measurements improved the consistency of measurements. This method could be applied in a large-scale clinical setting but requires updated models and higher data resolution.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8490
Author(s):  
Alyssa Romano ◽  
Deborah Staber ◽  
Alexander Grimm ◽  
Cornelius Kronlage ◽  
Justus Marquetand

Shear wave elastography (SWE) is a clinical ultrasound imaging modality that enables non-invasive estimation of tissue elasticity. However, various methodological factors—such as vendor-specific implementations of SWE, mechanical anisotropy of tissue, varying anatomical position of muscle and changes in elasticity due to passive muscle stretch—can confound muscle SWE measurements and increase their variability. A measurement protocol with a low variability of reference measurements in healthy subjects is desirable to facilitate diagnostic conclusions on an individual-patient level. Here, we present data from 52 healthy volunteers in the areas of: (1) Characterizing different limb and truncal muscles in terms of inter-subject variability of SWE measurements. Superficial muscles with little pennation, such as biceps brachii, exhibit the lowest variability whereas paravertebral muscles show the highest. (2) Comparing two protocols with different limb positioning in a trade-off between examination convenience and SWE measurement variability. Repositioning to achieve low passive extension of each muscle results in the lowest SWE variability. (3) Providing SWE shear wave velocity (SWV) reference values for a specific ultrasound machine/transducer setup (Canon Aplio i800, 18 MHz probe) for a number of muscles and two positioning protocols. We argue that methodological issues limit the current clinical applicability of muscle SWE.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3116
Author(s):  
Khurshid Ahmad ◽  
Jeong-Ho Lim ◽  
Eun-Ju Lee ◽  
Hee-Jin Chun ◽  
Shahid Ali ◽  
...  

Cultured meat production is an evolving method of producing animal meat using tissue engineering techniques. Cells, chemical factors, and suitable biomaterials that serve as scaffolds are all essential for the cultivation of muscle tissue. Scaffolding is essential for the development of organized meat products resembling steaks because it provides the mechanical stability needed by cells to attach, differentiate, and mature. In in vivo settings, extracellular matrix (ECM) ensures substrates and scaffolds are provided for cells. The ECM of skeletal muscle (SM) maintains tissue elasticity, creates adhesion points for cells, provides a three-dimensional (3D) environment, and regulates biological processes. Consequently, creating mimics of native ECM is a difficult task. Animal-derived polymers like collagen are often regarded as the gold standard for producing scaffolds with ECM-like properties. Animal-free scaffolds are being investigated as a potential source of stable, chemically defined, low-cost materials for cultured meat production. In this review, we explore the influence of ECM on myogenesis and its role as a scaffold and vital component to improve the efficacy of the culture media used to produce cultured meat.


2021 ◽  
Vol 8 ◽  
Author(s):  
Regine Nessel ◽  
Thorsten Löffler ◽  
Johannes Rinn ◽  
Philipp Lösel ◽  
Samuel Voss ◽  
...  

Aim: Mechanical principles successfully guide the construction of polymer material composites in engineering. Since the abdominal wall is a polymer composite augmented with a textile during incisional hernia repair we ask: can incisional hernia be repaired safely and durably based on biomechanical principles?Material and Methods: Repair materials were assessed on a self-built bench test using pulse loads to elude influences on the reconstruction of the abdominal wall. Tissue elasticity was analyzed preoperatively as needed with computed tomography at rest and during Valsalva's maneuver. Preoperatively, the critical retention force of the reconstruction to pulse loads was calculated and a biomechanically durable repair was designed based on the needs of the individual patient. Intraoperatively, the design was adjusted as needed. Hernia meshes with high grip factors (Progrip®, Dahlhausen® Cicat) were used for the repairs. Mesh sizes, fixation elements and reconstructive details were oriented on the biomechanical design. All patients recieved single-shot antibiosis. Patients were discharged after full ambulation was achieved.Results: A total of 163 patients (82 males and 81 females) were treated for incisional hernia in four hospitals by ten surgeons. Primary hernia was repaired in 119 patients. Recurrent hernia was operated on in 44 cases. Recurrent hernia was significantly larger (median 161 cm2 vs. 78 cm2; u-test: p = 0.00714). Re-do surgery took significantly longer (median 229 min vs. 150 min; p < 0.00001) since recurrent disease required more often transversus abdominis release (70% vs. 47%). GRIP tended to be higher in recurrent repair (p = 0.01828). Complication rates (15%) and hospital stay were the same (6 vs. 6 days; p = 0.28462). After 1 year, no recurrence was detected in either group. Pain levels were equally low in both primary and recurrent hernia repairs (median NAS = 0 in both groups at rest and under load, p = 0.88866).Conclusion: Incisional hernia can safely and durably be repaired based on biomechanical principles both in primary and recurrent disease. The GRIP concept provides a base for the application of biomechanical principles in incisional hernia repair.


2021 ◽  
Vol 3 ◽  
Author(s):  
Márcia Farina Kamilos ◽  
Ana Paula Ferreira Costa ◽  
Ayane Cristine Alves Sarmento ◽  
José Eleutério ◽  
Ana Katherine Gonçalves

The genitourinary syndrome in menopause can occur at different stages of life, with different causes or triggering factors, such as prolonged use of antiestrogens, chemotherapy, radiotherapy, and extensive vaginal surgeries, which can alter vascularization, hydration, collagen quality, and tissue elasticity. Despite hormonal therapy being considered the best evidenced treatment for genitourinary syndrome of menopause (GSM), there are limitations concerning the latter. Thus, alternative, complementary, or even substitutive treatments have emerged, such as energy use, promoting thermal tissue stimulation to improve tropism. Due to its practicality and feasibility, the micro ablative fractional radiofrequency (MAFRF) has gained space among these energies. It uses high-frequency electromagnetic waves and promotes thermal micro points in the superficial and deep dermis. The safety of these energies limits thermal action laterality and depth. Laterally, it is essential for an adequate regenerative effect without scarring marks or sequelae; the appropriate depth is important for stimulating the obligatory tissue repair response with the production and reorganization of collagen, elastic fibers, increased vascularization and hydration, and the consequent improvement in tropism. In gynecology, the MAFRF is used with therapeutic indication and functional improvement; it is applied to the entire length of the vaginal walls, the vulvar vestibule, urethral meatus, labia minora, clitoris prepuce, labia majora, perineum, and perianal region. The MAFRF has been proved to be an effective and safe treatment for GSM, with long-lasting effects, significantly reducing symptoms and improving vaginal tropism. This review aims to analyze the MAFRF as a non-hormonal therapeutic option for GSM.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masahiro Tsutsumi ◽  
Akimoto Nimura ◽  
Hajime Utsunomiya ◽  
Shintarou Kudo ◽  
Keiichi Akita

AbstractRecently, pathological changes in the fat pad on the anterior inferior iliac spine (AIIS), between the proximal rectus femoris and joint capsule, have been highlighted as a cause of anterior hip pain. However, precise fat pad features, such as the spatial distribution distal to the AIIS, histological features, and in vivo tissue elasticity, remain unclear. This study aimed to investigate the morphological characteristics of the fat pad on the AIIS. Four hips from four cadaveric donors were both macroscopically and histologically investigated, and eight hips from four volunteers were assessed using ultrasonography. The fat pad on the AIIS was also surrounded by the iliopsoas and gluteus minimus, extending distally to the superficial portion of the vastus lateralis, and the anterior portion of the gluteus maximus tendon. Histological analysis revealed that the fat pad was composed of loose connective tissue. Based on the ultrasonography, the shear wave velocity in the fat pad was significantly lower than that in the joint capsule. Conclusively, the pathological adhesion between the joint capsule and pericapsular muscles, if caused by fat pad fibrosis, may occur following the abovementioned fat pad spatial distribution.


Children ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 1042
Author(s):  
Agnieszka Cebula ◽  
Maciej Cebula ◽  
Ilona Kopyta

Ultrasonographic elastography is a relatively new imaging modality for the qualitative and quantitative assessments of tissue elasticity. While it has steadily gained use in adult clinical practice, including for liver diseases, breast cancer, thyroid pathologies, and muscle and tendon diseases, data on its paediatric application is still limited. Moreover, diagnosis of muscular diseases in children remains challenging. The gold standard methods, namely biopsy, electroneurography, and electromyography, are often limited owing to their invasive characteristics, possible contraindications, complications, and need for good cooperation, that is, a patient’s ability to perform certain tasks during the examination while withstanding discomfort, which is a significant problem especially in younger or uncooperative children. Genetic testing, which has broad diagnostic possibilities, often entails a high cost, which limits its application. Thus, a non-invasive, objective, repeatable, and accessible tool is needed to aid in both the diagnosis and monitoring of muscle pathologies. We believe that elastography may prove to be such a method. The aim of this review was to present the current knowledge on the use of muscle elastography in the paediatric population and information on the limitations of elastography in relation to examination protocols and factors for consideration in everyday practice and future studies.


Author(s):  
Alessio Di Clemente ◽  
Federica Maiole ◽  
Irene Bornia ◽  
Letizia Zullo

The octopus arm is a ‘one of a kind’ muscular hydrostat, as demonstrated by its high maneuverability and complexity of motions. It is composed of a complex array of muscles and intramuscular connective tissue, allowing force and shape production. In this study, we investigated the organization of the intramuscular elastic fibers in two main muscles composing the arm bulk: the longitudinal (L) and the transverse (T) muscles. We assessed their contribution to the muscles’ passive elasticity and stiffness and inferred their possible roles in limb deformation. First, we performed confocal imaging of whole arm samples and provided evidence of a muscle-specific organization of elastic fibers (more chaotic and less coiled in T than in L). We next show that in an arm at rest, L muscles are maintained under 20% compression and T muscles under 30% stretching. Hence, tensional stresses are inherently present in the arm and affect the strain of elastic fibers. Because connective tissue in muscles is used to transmit stress and store elastic energy, we investigated the contribution of elastic fibers to passive forces using step-stretch and sinusoidal length-change protocols. We observed a higher viscoelasticity of L and a higher stiffness of T muscles, in line with their elastic fiber configurations. This suggests that L might be involved in energy storage and damping, while T in posture maintenance and resistance to deformation. The elastic fiber configuration thus supports the specific role of muscles during movement and may contribute to the mechanics, energetic and control of arm motion.


2021 ◽  
Vol 9 ◽  
Author(s):  
Bhaskara R. Chintada ◽  
Richard Rau ◽  
Orcun Goksel

Shear wave elasticity imaging (SWEI) is a non-invasive imaging modality that provides tissue elasticity information by measuring the travelling speed of an induced shear-wave. It is commercially available on clinical ultrasound scanners and popularly used in the diagnosis and staging of liver disease and breast cancer. In conventional SWEI methods, a sequence of acoustic radiation force (ARF) pushes are used for inducing a shear-wave, which is tracked using high frame-rate multi-angle plane wave imaging (MA-PWI) to estimate the shear-wave speed (SWS). Conventionally, these plane waves are beamformed using a constant speed-of-sound (SoS), assuming an a-priori known and homogeneous tissue medium. However, soft tissues are inhomogeneous, with intrinsic SoS variations. In this work, we study the SoS effects and inhomogeneities on SWS estimation, using simulation and phantoms experiments with porcine muscle as an abbarator, and show how these aberrations can be corrected using local speed-of-sound adaptive beamforming. For shear-wave tracking, we compare standard beamform with spatially constant SoS values to software beamforming with locally varying SoS maps. We show that, given SoS aberrations, traditional beamforming using a constant SoS, regardless of the utilized SoS value, introduces a substantial bias in the resulting SWS estimations. Average SWS estimation disparity for the same material was observed over 4.3 times worse when a constant SoS value is used compared to that when a known SoS map is used for beamforming. Such biases are shown to be corrected by using a local SoS map in beamforming, indicating the importance of and the need for local SoS reconstruction techniques.


Sign in / Sign up

Export Citation Format

Share Document