Genetics of Physiological and Behavioral Resistance to Host Furanocoumarins in the Parsnip Webworm

Evolution ◽  
1992 ◽  
Vol 46 (5) ◽  
pp. 1373 ◽  
Author(s):  
M. R. Berenbaum ◽  
A. R. Zangerl

Evolution ◽  
1992 ◽  
Vol 46 (5) ◽  
pp. 1373-1384 ◽  
Author(s):  
M. R. Berenbaum ◽  
A. R. Zangerl


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 263
Author(s):  
Ayako Wada-Katsumata ◽  
Coby Schal

Saliva has diverse functions in feeding behavior of animals. However, the impact of salivary digestion of food on insect gustatory information processing is poorly documented. Glucose-aversion (GA) in the German cockroach, Blattella germanica, is a highly adaptive heritable behavioral resistance trait that protects the cockroach from ingesting glucose-containing-insecticide-baits. In this study, we confirmed that GA cockroaches rejected glucose, but they accepted oligosaccharides. However, whereas wild-type cockroaches that accepted glucose also satiated on oligosaccharides, GA cockroaches ceased ingesting the oligosaccharides within seconds, resulting in significantly lower consumption. We hypothesized that saliva might hydrolyze oligosaccharides, releasing glucose and terminating feeding. By mixing artificially collected cockroach saliva with various oligosaccharides, we demonstrated oligosaccharide-aversion in GA cockroaches. Acarbose, an alpha-glucosidase inhibitor, prevented the accumulation of glucose and rescued the phagostimulatory response and ingestion of oligosaccharides. Our results indicate that pre-oral and oral hydrolysis of oligosaccharides by salivary alpha-glucosidases released glucose, which was then processed by the gustatory system of GA cockroaches as a deterrent and caused the rejection of food. We suggest that the genetic mechanism of glucose-aversion support an extended aversion phenotype that includes glucose-containing oligosaccharides. Salivary digestion protects the cockroach from ingesting toxic chemicals and thus could support the rapid evolution of behavioral and physiological resistance in cockroach populations.



Ecology ◽  
1977 ◽  
Vol 58 (5) ◽  
pp. 1112-1119 ◽  
Author(s):  
John N. Thompson ◽  
Peter W. Price


2009 ◽  
Vol 99 (4) ◽  
pp. 393-400 ◽  
Author(s):  
N.M.P. Guedes ◽  
R.N.C. Guedes ◽  
G.H. Ferreira ◽  
L.B. Silva

AbstractInsects have evolved a variety of physiological and behavioral responses to various toxins in natural and managed ecosystems. However, insect behavior is seldom considered in insecticide studies although insects are capable of changing their behavior in response to their sensory perception of insecticides, which may compromise insecticide efficacy. This is particularly serious for insect pests that are physiologically resistant to insecticides since insecticide avoidance may further compromise their management. Locomotion plays a major role determining insecticide exposure and was, therefore, considered in investigating the behavioral responses of male and female adult insects from an insecticide-susceptible and two insecticide-resistant strains of the maize weevil Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), a major pest of stored cereals. Different dose-dependent behavioral responses were expected among strains with behavioral resistance less likely to occur in physiologically resistant insects since they are able to withstand higher doses of insecticide. The behavioral responses to deltamethrin-sprayed surfaces differed among the maize weevil strains. Such responses were concentration-independent for all of the strains. Stimulus-independent behavioral resistance was unrelated to physiological resistance with one resistant strain exhibiting higher rates of flight take-off and the other resistant strain exhibiting lower flight take-off. Female mobility was similar for all strains, unlike male mobility. Males of each strain exhibited a pattern of mobility following the same trend of flight take-off. Behavioral patterns of response to insecticide are, therefore, variable among strains, particularly among insecticide-resistant strains, and worth considering in resistance surveys and management programs.



2010 ◽  
Author(s):  
Jared Lessard ◽  
Ellen Greenberger ◽  
Chuansheng Chen


2010 ◽  
Author(s):  
Jared Lessard ◽  
Ellen Greenberger ◽  
Chuansheng Chen


Author(s):  
Joseph L Spencer ◽  
Timothy R Mabry ◽  
Eli Levine ◽  
Scott A Isard

Abstract Western corn rootworm, Diabrotica virgifera virgifera LeConte, biology is tied to the continuous availability of its host (corn, Zea mays L.). Annual rotation of corn with a nonhost, like soybean (Glycine max (L.) Merrill) was a reliable tactic to manage western corn rootworm. Behavioral resistance to annual crop rotation (rotation resistance) allowed some eastern U.S. Corn Belt populations to circumvent rotation by laying eggs in soybean and in cornfields. When active in soybean, rotation-resistant adults commonly consume foliage, in spite of detrimental effects on beetle survival. Rotation-resistant beetle activity in soybean is enabled by the expression of certain proteinases and an adapted gut microbiota that provide limited protection from soybean antiherbivore defenses. We investigated the effects of corn and soybean herbivory on rotation-resistant female survival and initiation of flight using mortality assays and wind tunnel flight tests. Among field-collected females tested with mortality assays, beetles from collection sites in a cornfield survived longer than those from collection sites in a soybean field. However, reduced survival due to soybean herbivory could be restored by consuming corn tissues. Field-collected beetles that fed on a soybean tissue laboratory diet or only water were more likely to fly in a wind tunnel than corn-feeding beetles. Regardless of collection site and laboratory diet, 90.5% of beetles that flew oriented their flights upwind. Diet-related changes in the probability of flight provide a proximate mechanism for interfield movement that facilitates restorative feeding and the survival of females previously engaged in soybean herbivory. Rotation-resistant western corn rootworm females feeding on soybean tissues experience reduced survival in mortality assays and display increased flight probability (which may facilitate flight back to a cornfield where consumption of host tissues improves survival potential and facilitates maturation of eggs). The consequences of soybean herbivory provide a proximal mechanism for behavioral resistance to crop rotation. Increased egg-laying probability while feeding on soybean tissues, facilitation of egg maturation while feeding on corn tissues, and interfield movement are previously documented consequences.



2019 ◽  
Vol 112 (4) ◽  
pp. 1741-1751
Author(s):  
Lewis R Braswell ◽  
Dominic D Reisig ◽  
Clyde E Sorenson ◽  
Guy D Collins

Abstract Helicoverpa zea Boddie is a common economic pest of cotton (Gossypium hirsutum L.), including transgenic cotton varieties that express Bacillus thuringiensis (Bt). Helicoverpa zea oviposition is similar in Bt and non-Bt cotton, but behavior of H. zea larvae can be different in the presence of Bt, with neonates moving away from terminals faster in single-toxin Bt than non-Bt cotton or avoiding Bt-treated diet in the lab. We quantified H. zea oviposition and larval distribution on structures within cotton plants in small plot experiments of Cry1Ac + Cry1F cotton for 2 yr under different irrigation and nitrogen treatments. More eggs were oviposited on plants receiving nitrogen application during 2016 and on leaves in the top section of irrigated plants during 2017, but other treatment effects on eggs or larvae were minimal. Helicoverpa zea eggs were most common on leaves in the top third of plants at position zero and middle section of cotton plants throughout the season, but some oviposition occurred on fruiting structures as well. First and second instars were more common on squares in the top section of plants during 2016 and bolls in the middle and lower sections during 2017 due to oviposition lower in the canopy during 2017. During both years, third through fifth instars were more common on bolls in the middle and lower section of plants closer to the main stem. These findings have resistance management implications as extended larval feeding on bolls could optimize nutrition, decrease Bt susceptibility, and potentially influence behavioral resistance.



1990 ◽  
Vol 16 (8) ◽  
pp. 2451-2460 ◽  
Author(s):  
Keywan Lee ◽  
May R. Berenbaum


Sign in / Sign up

Export Citation Format

Share Document