behavioral resistance
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 17)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Lisa Mlekus ◽  
Anna-Lena Kato-Beiderwieden ◽  
Katharina D. Schlicher ◽  
Günter W. Maier

Abstract. Change-management activities require extensive interventions, for which small and medium-sized companies often lack the expertise. Thus, we examined whether a short-term intervention could be an innovative approach that affects employees’ attitudes and behavior. In the cooperative project IviPep, a company developed digital tools for its own internal development process. Our intervention was part of the corresponding training and consisted of a 5-minute presentation about prototypical reactions to change and a 45-minute workshop. Employees could voice their concerns, reflect on advantages, and work on potential solutions to address their concerns. Results of a survey before and after the training ( N = 22) showed that the short-term intervention significantly increased readiness for change ( d = 0.72) but did not significantly increase overall attitude toward change ( d = 0.16) or behavioral resistance to change ( d = -0.37), although the effects pointed in the intended direction. Our results indicate that even small change efforts can make a difference.


Author(s):  
Joseph L Spencer ◽  
Timothy R Mabry ◽  
Eli Levine ◽  
Scott A Isard

Abstract Western corn rootworm, Diabrotica virgifera virgifera LeConte, biology is tied to the continuous availability of its host (corn, Zea mays L.). Annual rotation of corn with a nonhost, like soybean (Glycine max (L.) Merrill) was a reliable tactic to manage western corn rootworm. Behavioral resistance to annual crop rotation (rotation resistance) allowed some eastern U.S. Corn Belt populations to circumvent rotation by laying eggs in soybean and in cornfields. When active in soybean, rotation-resistant adults commonly consume foliage, in spite of detrimental effects on beetle survival. Rotation-resistant beetle activity in soybean is enabled by the expression of certain proteinases and an adapted gut microbiota that provide limited protection from soybean antiherbivore defenses. We investigated the effects of corn and soybean herbivory on rotation-resistant female survival and initiation of flight using mortality assays and wind tunnel flight tests. Among field-collected females tested with mortality assays, beetles from collection sites in a cornfield survived longer than those from collection sites in a soybean field. However, reduced survival due to soybean herbivory could be restored by consuming corn tissues. Field-collected beetles that fed on a soybean tissue laboratory diet or only water were more likely to fly in a wind tunnel than corn-feeding beetles. Regardless of collection site and laboratory diet, 90.5% of beetles that flew oriented their flights upwind. Diet-related changes in the probability of flight provide a proximate mechanism for interfield movement that facilitates restorative feeding and the survival of females previously engaged in soybean herbivory. Rotation-resistant western corn rootworm females feeding on soybean tissues experience reduced survival in mortality assays and display increased flight probability (which may facilitate flight back to a cornfield where consumption of host tissues improves survival potential and facilitates maturation of eggs). The consequences of soybean herbivory provide a proximal mechanism for behavioral resistance to crop rotation. Increased egg-laying probability while feeding on soybean tissues, facilitation of egg maturation while feeding on corn tissues, and interfield movement are previously documented consequences.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 724
Author(s):  
Ayako Wada-Katsumata ◽  
Coby Schal

An association of food sources with odors prominently guides foraging behavior in animals. To understand the interaction of olfactory memory and food preferences, we used glucose-averse (GA) German cockroaches. Multiple populations of cockroaches evolved a gustatory polymorphism where glucose is perceived as a deterrent and enables GA cockroaches to avoid eating glucose-containing toxic baits. Comparative behavioral analysis using an operant conditioning paradigm revealed that learning and memory guide foraging decisions. Cockroaches learned to associate specific food odors with fructose (phagostimulant, reward) within only a 1 h conditioning session, and with caffeine (deterrent, punishment) after only three 1 h conditioning sessions. Glucose acted as reward in wild type (WT) cockroaches, but GA cockroaches learned to avoid an innately attractive odor that was associated with glucose. Olfactory memory was retained for at least 3 days after three 1 h conditioning sessions. Our results reveal that specific tastants can serve as potent reward or punishment in olfactory associative learning, which reinforces gustatory food preferences. Olfactory learning, therefore, reinforces behavioral resistance of GA cockroaches to sugar-containing toxic baits. Cockroaches may also generalize their olfactory learning to baits that contain the same or similar attractive odors even if they do not contain glucose.


Author(s):  
Ayako Wada-Katsumata ◽  
Coby Schal

An association of food sources with odors prominently guides foraging behavior in animals. To understand the interaction of olfactory memory and food preferences, we used glucose-averse (GA) German cockroaches. Multiple populations of cockroaches evolved a gustatory polymorphism where glucose is perceived as a deterrent and enables GA cockroaches to avoid eating glucose-containing toxic baits. Comparative behavioral analysis using an operant conditioning paradigm revealed that learning and memory guide foraging decisions. Cockroaches learned to associate specific food odors with fructose (phagostimulant, reward) within only a 1 hr conditioning session, and with caffeine (deterrent, punishment) after only three 1 hr conditioning sessions. Glucose acted as reward in wild type (WT) cockroaches, but GA cockroaches learned to avoid an innately attractive odor that was associated with glucose. Olfactory memory was retained for at least 3 days after three 1 hr conditioning sessions. Our results reveal that specific tastants can serve as potent reward or punishment in olfactory associative learning, which reinforces gustatory food preferences. Olfactory learning therefore reinforces behavioral resistance of GA cockroaches to sugar-containing toxic baits. Cockroaches may also generalize their olfactory learning to baits that contain the same or similar attractive odors even if they do not contain glucose.


2021 ◽  
Vol 12 ◽  
Author(s):  
Veronica Lazar ◽  
Alina Maria Holban ◽  
Carmen Curutiu ◽  
Mariana Carmen Chifiriuc

Pathogenic bacteria have the ability to sense their versatile environment and adapt by behavioral changes both to the external reservoirs and the infected host, which, in response to microbial colonization, mobilizes equally sophisticated anti-infectious strategies. One of the most important adaptive processes is the ability of pathogenic bacteria to turn from the free, floating, or planktonic state to the adherent one and to develop biofilms on alive and inert substrata; this social lifestyle, based on very complex communication networks, namely, the quorum sensing (QS) and response system, confers them an increased phenotypic or behavioral resistance to different stress factors, including host defense mechanisms and antibiotics. As a consequence, biofilm infections can be difficult to diagnose and treat, requiring complex multidrug therapeutic regimens, which often fail to resolve the infection. One of the most promising avenues for discovering novel and efficient antibiofilm strategies is targeting individual cells and their QS mechanisms. A huge amount of data related to the inhibition of QS and biofilm formation in pathogenic bacteria have been obtained using the well-established gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa models. The purpose of this paper was to revise the progress on the development of antibiofilm and anti-QS strategies in the less investigated gram-negative ESKAPE pathogens Klebsiella pneumoniae, Acinetobacter baumannii, and Enterobacter sp. and identify promising leads for the therapeutic management of these clinically significant and highly resistant opportunistic pathogens.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tobias Kärner ◽  
Matthias Bottling ◽  
Edgar Friederichs ◽  
Detlef Sembill

We demonstrate the relationships between occupational demands in German vocational education and training (VET) teacher training, stress symptoms, and different behavioral resilience competencies. Taking into account interindividual differences in resilience competencies, we use a typological approach to identify different types of (trainee) teachers classified by their degrees and configurations of resilience competencies. Our empirical analysis is based on questionnaire data from 131 German vocational trainees and qualified teachers. The results reveal, among other things, that all three resilience competencies—resistance, flexibility, and dynamism—are significantly negatively correlated with the demands of working conditions and workload. Via a latent class analysis, we were able to identify three groups of (trainee) teachers who differed in their resilience competencies to adapt appropriately to different situations and their requirements (“behavioral flexibility”), to recover rapidly from setbacks and to defy the expectations of others (“behavioral resistance”), and to initiate changes as soon as they are necessary or desirable (“behavioral dynamics”). More resilient (trainee) teachers show, among other things, lower values for anxiety as an emotional stress symptom and higher values for job engagement. The findings are discussed with regard to implications for VET teacher training and we stress the need for equilibration on a systemic perspective.


2021 ◽  
pp. 108674
Author(s):  
Shujing Gao ◽  
Jing Guo ◽  
Yan Xu ◽  
Yunbo Tu ◽  
Huaiping Zhu

Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 263
Author(s):  
Ayako Wada-Katsumata ◽  
Coby Schal

Saliva has diverse functions in feeding behavior of animals. However, the impact of salivary digestion of food on insect gustatory information processing is poorly documented. Glucose-aversion (GA) in the German cockroach, Blattella germanica, is a highly adaptive heritable behavioral resistance trait that protects the cockroach from ingesting glucose-containing-insecticide-baits. In this study, we confirmed that GA cockroaches rejected glucose, but they accepted oligosaccharides. However, whereas wild-type cockroaches that accepted glucose also satiated on oligosaccharides, GA cockroaches ceased ingesting the oligosaccharides within seconds, resulting in significantly lower consumption. We hypothesized that saliva might hydrolyze oligosaccharides, releasing glucose and terminating feeding. By mixing artificially collected cockroach saliva with various oligosaccharides, we demonstrated oligosaccharide-aversion in GA cockroaches. Acarbose, an alpha-glucosidase inhibitor, prevented the accumulation of glucose and rescued the phagostimulatory response and ingestion of oligosaccharides. Our results indicate that pre-oral and oral hydrolysis of oligosaccharides by salivary alpha-glucosidases released glucose, which was then processed by the gustatory system of GA cockroaches as a deterrent and caused the rejection of food. We suggest that the genetic mechanism of glucose-aversion support an extended aversion phenotype that includes glucose-containing oligosaccharides. Salivary digestion protects the cockroach from ingesting toxic chemicals and thus could support the rapid evolution of behavioral and physiological resistance in cockroach populations.


Author(s):  
Ayako Wada-Katsumata ◽  
Coby Schal

Saliva has diverse functions in feeding behavior of animals. However, the impact of salivary digestion of food on insect gustatory information processing is poorly documented. Glucose-aversion (GA) in the German cockroach, Blattella germanica, is a highly adaptive heritable behavioral resistance trait that protects the cockroach from ingesting glucose-containing-insecticide-baits. In this study, we confirmed that GA cockroaches rejected glucose, but they accepted oligosaccharides. However, whereas wild-type cockroaches that accepted glucose also satiated on oligosaccharides, GA cockroaches ceased ingesting the oligosaccharides within seconds, resulting in significantly lower consumption. We hypothesized that saliva might hydrolyze oligosaccharides, releasing glucose and terminating feeding. By mixing artificially collected cockroach saliva with various oligosaccharides, we demonstrated oligosaccharide-aversion in GA cockroaches. Acarbose, an alpha-glucosidase inhibitor, prevented the accumulation of glucose and rescued the phagostimulatory response and ingestion of oligosaccharides. Our results indicate that pre-oral and oral hydrolysis of oligosaccharides by salivary alpha-glucosidases released glucose, which was then processed by the gustatory system of GA cockroaches as a deterrent and caused the rejection of food. We suggest that the genetic mechanism of glucose-aversion support an extended aversion phenotype that includes glucose-containing oligosaccharides. Salivary digestion protects the cockroach from ingesting toxic chemicals and thus could support the rapid evolution of behavioral and physiological resistance in cockroach populations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Caroline R. Amoroso

Conceptual parallels between physiological and behavioral forms of resistance to parasites have led to the development of terminology like “the behavioral immune system” to refer to behaviors that combat parasites. I extend this metaphor by applying findings from research on physiological resistance to generate predictions for the ecology and evolution of behavioral resistance (here, synonymous with avoidance). In certain cases, behavioral resistance may follow similar evolutionary dynamics to physiological resistance. However, more research on the nature of the costs of behavioral resistance is needed, including how parasite transmission mode may be a key determinant of these costs. In addition, “acquiring” behavioral resistance may require specific mechanisms separate from classical forms of conditioning, due to constraints on timing of host learning processes and parasite incubation periods. Given existing literature, behavioral resistance to infectious disease seems more likely to be innate than acquired within the lifetime of an individual, raising new questions about how individual experience could shape anti-parasite behaviors. This review provides a framework for using existing literature on physiological resistance to generate predictions for behavioral resistance, and highlights several important directions for future research based on this comparison.


Sign in / Sign up

Export Citation Format

Share Document