Actions by the classical Banach spaces

2000 ◽  
Vol 65 (1) ◽  
pp. 392-420 ◽  
Author(s):  
G. Hjorth

The study of continuous group actions is ubiquitous in mathematics, and perhaps the most general kinds of actions for which we can hope to prove theorems in just ZFC are those where a Polish group acts on a Polish space.For this general class we can find works such as [29] that build on ideas from ergodic theory and examine actions of locally compact groups in both the measure theoretic and topological contexts. On the other hand a text in model theory, such as [12], will typically consider issues bearing on the actions by the symmetric group of all permutations of the integers. More generally [1] shows that the orbit equivalence relations induced by closed subgroups of the infinite symmetric group can be reduced to the isomorphism relation on corresponding classes of countable models.This paper considers a third category formed by the continuous actions of separable Banach spaces on Polish spaces. These examples cannot be subsumed under the two earlier headings, and it is known from [10] that theBorel cardinalitiesof the quotient spaces that arise from such actions are incomparable with the equivalence relations induced by the symmetric group or any locally compact Polish group action.One of the first things to be addressed concerns the complexity of these equivalence relations. This question forappears in [1].

2000 ◽  
Vol 65 (4) ◽  
pp. 1881-1894 ◽  
Author(s):  
Sławomir Solecki

AbstractWe show that each non-compact Polish group admits a continuous action on a Polish space with non-smooth orbit equivalence relation. We actually construct a free such action. Thus for a Polish group compactness is equivalent to all continuous free actions of this group being smooth. This answers a question of Kechris. We also establish results relating local compactness of the group with its inability to induce orbit equivalence relations not reducible to countable Borel equivalence relations. Generalizing a result of Hjorth, we prove that each non-locally compact, that is, infinite dimensional, separable Banach space has a continuous action on a Polish space with non-Borel orbit equivalence relation, thus showing that this property characterizes non-local compactness among Banach spaces.


2000 ◽  
Vol 32 (01) ◽  
pp. 86-100 ◽  
Author(s):  
Wilfrid S. Kendall

We study the probability theory of countable dense random subsets of (uncountably infinite) Polish spaces. It is shown that if such a set is stationary with respect to a transitive (locally compact) group of symmetries then any event which concerns the random set itself (rather than accidental details of its construction) must have probability zero or one. Indeed the result requires only quasi-stationarity (null-events stay null under the group action). In passing, it is noted that the property of being countable does not correspond to a measurable subset of the space of subsets of an uncountably infinite Polish space.


1977 ◽  
Vol 23 (3) ◽  
pp. 257-265 ◽  
Author(s):  
Le Van Tu

AbstractIn this paper, the author introduces the notion of Ω-Polish spaces (which includes the Polish spaces and a large class of Banach spaces) and extends Castaing's selection theorem (1966) for closed-valued measurable thin multifunctions from a measurable space into an Ω-Polish space. He also extends Robertson's theorem (1974) in the same way.


2010 ◽  
Vol 75 (3) ◽  
pp. 1081-1086 ◽  
Author(s):  
Christian Rosendal

AbstractIt is proved that any countable index, universally measurable subgroup of a Polish group is open. By consequence, any universally measurable homomorphism from a Polish group into the infinite symmetric group S∞ is continuous. It is also shown that a universally measurable homomorphism from a Polish group into a second countable, locally compact group is necessarily continuous.


2000 ◽  
Vol 32 (1) ◽  
pp. 86-100 ◽  
Author(s):  
Wilfrid S. Kendall

We study the probability theory of countable dense random subsets of (uncountably infinite) Polish spaces. It is shown that if such a set is stationary with respect to a transitive (locally compact) group of symmetries then any event which concerns the random set itself (rather than accidental details of its construction) must have probability zero or one. Indeed the result requires only quasi-stationarity (null-events stay null under the group action). In passing, it is noted that the property of being countable does not correspond to a measurable subset of the space of subsets of an uncountably infinite Polish space.


2011 ◽  
Vol 76 (1) ◽  
pp. 243-266 ◽  
Author(s):  
Sy-David Friedman ◽  
Luca Motto Ros

AbstractLouveau and Rosendal [5] have shown that the relation of bi-embeddability for countable graphs as well as for many other natural classes of countable structures is complete under Borel reducibility for analytic equivalence relations. This is in strong contrast to the case of the isomorphism relation, which as an equivalence relation on graphs (or on any class of countable structures consisting of the models of a sentence of ) is far from complete (see [5, 2]).In this article we strengthen the results of [5] by showing that not only does bi-embeddability give rise to analytic equivalence relations which are complete under Borel reducibility, but in fact any analytic equivalence relation is Borel equivalent to such a relation. This result and the techniques introduced answer questions raised in [5] about the comparison between isomorphism and bi-embeddability. Finally, as in [5] our results apply not only to classes of countable structures defined by sentences of , but also to discrete metric or ultrametric Polish spaces, compact metrizable topological spaces and separable Banach spaces, with various notions of embeddability appropriate for these classes, as well as to actions of Polish monoids.


2021 ◽  
Author(s):  
Yu-Lin Chou

We give,as a preliminary result, some topological characterizations of locally compact second-countable Hausdorff spaces. Then we show that a topological manifold, with boundary or not,is precisely a Polish space with a coordinate open cover; this connects geometry with descriptive set theory.


1981 ◽  
Vol 33 (4) ◽  
pp. 988-1021 ◽  
Author(s):  
J. W. Lorimer

Affine and projective Hjelmslev planes are generalizations of ordinary affine and projective planes where two points (lines) may be joined by (may intersect in) more than one line (point). The elements involved in multiple joinings or intersections are neighbours, and the neighbour relations on points respectively lines are equivalence relations whose quotient spaces define an ordinary affine or projective plane called the canonical image of the Hjelmslev plane. An affine or projective Hjelmslev plane is a topological plane (briefly a TH-plane and specifically a TAH-plane respectively a TPH-plane) if its point and line sets are topological spaces so that the joining of non-neighbouring points, the intersection of non-neighbouring lines and (in the affine case) parallelism are continuous maps, and the neighbour relations are closed.In this paper we continue our investigation of such planes initiated by the author in [38] and [39].


Sign in / Sign up

Export Citation Format

Share Document