scholarly journals Stationary countable dense random sets

2000 ◽  
Vol 32 (1) ◽  
pp. 86-100 ◽  
Author(s):  
Wilfrid S. Kendall

We study the probability theory of countable dense random subsets of (uncountably infinite) Polish spaces. It is shown that if such a set is stationary with respect to a transitive (locally compact) group of symmetries then any event which concerns the random set itself (rather than accidental details of its construction) must have probability zero or one. Indeed the result requires only quasi-stationarity (null-events stay null under the group action). In passing, it is noted that the property of being countable does not correspond to a measurable subset of the space of subsets of an uncountably infinite Polish space.

2000 ◽  
Vol 32 (01) ◽  
pp. 86-100 ◽  
Author(s):  
Wilfrid S. Kendall

We study the probability theory of countable dense random subsets of (uncountably infinite) Polish spaces. It is shown that if such a set is stationary with respect to a transitive (locally compact) group of symmetries then any event which concerns the random set itself (rather than accidental details of its construction) must have probability zero or one. Indeed the result requires only quasi-stationarity (null-events stay null under the group action). In passing, it is noted that the property of being countable does not correspond to a measurable subset of the space of subsets of an uncountably infinite Polish space.


Author(s):  
Alan L. T. Paterson

SynopsisUsing techniques from probability theory, it has been established that if μ is a probability measure on a separable, locally compact group, then the space of μ-harmonic functions on the group can be identified with C(X) for some compact, Hausdorff space X. The space X is known as the Poisson space of μ. We generalise this result in the context of a measure μ on a locally compact semigroup S, in particular establishing the existence of a Poisson space for non-separable groups. The proof is non-probabilistic, and depends on properties of projections on C(K)(K compact Hausdorff). We then show that if S is compact and the support of μ generates S, then the Poisson space associated with μ, is X, where X×G×Y is the Rees product representing the kernel of S.


2000 ◽  
Vol 65 (1) ◽  
pp. 392-420 ◽  
Author(s):  
G. Hjorth

The study of continuous group actions is ubiquitous in mathematics, and perhaps the most general kinds of actions for which we can hope to prove theorems in just ZFC are those where a Polish group acts on a Polish space.For this general class we can find works such as [29] that build on ideas from ergodic theory and examine actions of locally compact groups in both the measure theoretic and topological contexts. On the other hand a text in model theory, such as [12], will typically consider issues bearing on the actions by the symmetric group of all permutations of the integers. More generally [1] shows that the orbit equivalence relations induced by closed subgroups of the infinite symmetric group can be reduced to the isomorphism relation on corresponding classes of countable models.This paper considers a third category formed by the continuous actions of separable Banach spaces on Polish spaces. These examples cannot be subsumed under the two earlier headings, and it is known from [10] that theBorel cardinalitiesof the quotient spaces that arise from such actions are incomparable with the equivalence relations induced by the symmetric group or any locally compact Polish group action.One of the first things to be addressed concerns the complexity of these equivalence relations. This question forappears in [1].


2021 ◽  
Author(s):  
Yu-Lin Chou

We give,as a preliminary result, some topological characterizations of locally compact second-countable Hausdorff spaces. Then we show that a topological manifold, with boundary or not,is precisely a Polish space with a coordinate open cover; this connects geometry with descriptive set theory.


Author(s):  
A. L. Carey ◽  
W. Moran

AbstractLet G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T1 whenever G-quasiorbits in [G, G] are closed.


Author(s):  
Eirik Berge

AbstractWe investigate the wavelet spaces $$\mathcal {W}_{g}(\mathcal {H}_{\pi })\subset L^{2}(G)$$ W g ( H π ) ⊂ L 2 ( G ) arising from square integrable representations $$\pi :G \rightarrow \mathcal {U}(\mathcal {H}_{\pi })$$ π : G → U ( H π ) of a locally compact group G. We show that the wavelet spaces are rigid in the sense that non-trivial intersection between them imposes strong restrictions. Moreover, we use this to derive consequences for wavelet transforms related to convexity and functions of positive type. Motivated by the reproducing kernel Hilbert space structure of wavelet spaces we examine an interpolation problem. In the setting of time–frequency analysis, this problem turns out to be equivalent to the HRT-conjecture. Finally, we consider the problem of whether all the wavelet spaces $$\mathcal {W}_{g}(\mathcal {H}_{\pi })$$ W g ( H π ) of a locally compact group G collectively exhaust the ambient space $$L^{2}(G)$$ L 2 ( G ) . We show that the answer is affirmative for compact groups, while negative for the reduced Heisenberg group.


2003 ◽  
Vol 10 (3) ◽  
pp. 503-508 ◽  
Author(s):  
Elhoucien Elqorachi ◽  
Mohamed Akkouchi

Abstract We generalize the well-known Baker's superstability result for the d'Alembert functional equation with values in the field of complex numbers to the case of the integral equation where 𝐺 is a locally compact group, μ is a generalized Gelfand measure and σ is a continuous involution of 𝐺.


2017 ◽  
Vol 28 (10) ◽  
pp. 1750067 ◽  
Author(s):  
M. Alaghmandan ◽  
I. G. Todorov ◽  
L. Turowska

We initiate the study of the completely bounded multipliers of the Haagerup tensor product [Formula: see text] of two copies of the Fourier algebra [Formula: see text] of a locally compact group [Formula: see text]. If [Formula: see text] is a closed subset of [Formula: see text] we let [Formula: see text] and show that if [Formula: see text] is a set of spectral synthesis for [Formula: see text] then [Formula: see text] is a set of local spectral synthesis for [Formula: see text]. Conversely, we prove that if [Formula: see text] is a set of spectral synthesis for [Formula: see text] and [Formula: see text] is a Moore group then [Formula: see text] is a set of spectral synthesis for [Formula: see text]. Using the natural identification of the space of all completely bounded weak* continuous [Formula: see text]-bimodule maps with the dual of [Formula: see text], we show that, in the case [Formula: see text] is weakly amenable, such a map leaves the multiplication algebra of [Formula: see text] invariant if and only if its support is contained in the antidiagonal of [Formula: see text].


Author(s):  
Klaus Thomsen

SynopsisWe consider automorphic actions on von Neumann algebras of a locally compact group E given as a topological extension 0 → A → E → G → 0, where A is compact abelian and second countable. Motivated by the wish to describe and classify ergodic actions of E when G is finite, we classify (up to conjugacy) first the ergodic actions of locally compact groups on finite-dimensional factors and then compact abelian actions with the property that the fixed-point algebra is of type I with atomic centre. We then handle the case of ergodic actions of E with the property that the action is already ergodic when restricted to A, and then, as a generalisation, the case of (not necessarily ergodic) actions of E with the property that the restriction to A is an action with abelian atomic fixed-point algebra. Both these cases are handled for general locally compact-countable G. Finally, we combine the obtained results to classify the ergodic actions of E when G is finite, provided that either the extension is central and Hom (G, T) = 0, or G is abelian and either cyclic or of an order not divisible by a square.


Sign in / Sign up

Export Citation Format

Share Document