Undecidable wreath products and skew power series fields

1998 ◽  
Vol 63 (1) ◽  
pp. 237-246 ◽  
Author(s):  
Françoise Delon ◽  
Patrick Simonetta

We prove the undecidability of a very large class of restricted and unrestricted wreath products (Theorem 1.2), and of some skew fields of power series (Section2). Both undecidabilities are obtained by interpreting some enrichments of twisted wreath products, which are themselves proved to be undecidable (Proposition 1.1).We consider division rings of power series in various languages:We show (Theorem 2.8) that every power series division ring k((B)), whose field of constants k is commutative and whose ordered group of exponents is noncommutative with a convex center, is undecidable in every extension of the language of rings where the valuation and the ordered group B are definable.For certain k and B we prove here the undecidability of the structurewhere X↾k((B))xB is the restriction of the multiplication to k((B)) Χ B,and γ is a given conjugation of k((B)). This shows that we cannot hope to improve our previous result, a sort of Ax-Kochen-Ershov principle for power series division rings, which ensures thatis decidable for every decidable solvable B.


1966 ◽  
Vol 62 (4) ◽  
pp. 637-642 ◽  
Author(s):  
T. W. Cusick

For a real number λ, ‖λ‖ is the absolute value of the difference between λ and the nearest integer. Let X represent the m-tuple (x1, x2, … xm) and letbe any n linear forms in m variables, where the Θij are real numbers. The following is a classical result of Khintchine (1):For all pairs of positive integers m, n there is a positive constant Г(m, n) with the property that for any forms Lj(X) there exist real numbers α1, α2, …, αn such thatfor all integers x1, x2, …, xm not all zero.



1968 ◽  
Vol 9 (2) ◽  
pp. 146-151 ◽  
Author(s):  
F. J. Rayner

Letkbe any algebraically closed field, and denote byk((t)) the field of formal power series in one indeterminatetoverk. Letso thatKis the field of Puiseux expansions with coefficients ink(each element ofKis a formal power series intl/rfor some positive integerr). It is well-known thatKis algebraically closed if and only ifkis of characteristic zero [1, p. 61]. For examples relating to ramified extensions of fields with valuation [9, §6] it is useful to have a field analogous toKwhich is algebraically closed whenkhas non-zero characteristicp. In this paper, I prove that the setLof all formal power series of the form Σaitei(where (ei) is well-ordered,ei=mi|nprt,n∈ Ζ,mi∈ Ζ,ai∈k,ri∈ Ν) forms an algebraically closed field.



Author(s):  
S. N. Afriat

Since the first introduction of the concept of a matrix, questions about functions of matrices have had the attention of many writers, starting with Cayley(i) in 1858, and Laguerre(2) in 1867. In 1883, Sylvester(3) defined a general function φ(a) of a matrix a with simple characteristic roots, by use of Lagrange's interpolation formula, and Buchheim (4), in 1886, extended his definition to the case of multiple characteristic roots. Then Weyr(5) showed in 1887 that, for a matrix a with characteristic roots lying inside the circle of convergence of a power series φ(ζ), the power series φ(a) is convergent; and in 1900 Poincaré (6) obtained the formulaefor the sum, where C is a circle lying in and concentric with the circle of convergence, and containing all the characteristic roots in its ulterior, such a formula having effectively been suggested by Frobenius(7) in 1896 for defining a general function of a matrix. Phillips (8), in 1919, discovered the analogue, for power series in matrices, of Taylor's theorem. In 1926 Hensel(9) completed the result of Weyr by showing that a necessary and sufficient condition for the convergence of φ(a) is the convergence of the derived series φ(r)(α) (0 ≼ r < mα; α) at each characteristic root α of a, of order r at most the multiplicity mα of α. In 1928 Giorgi(10) gave a definition, depending on the classical canonical decomposition of a matrix, which is equivalent to the contour integral formula, and Fantappie (11) developed the theory of this formula, and obtained the expressionfor the characteristic projectors.



1982 ◽  
Vol 34 (4) ◽  
pp. 952-960 ◽  
Author(s):  
W. T. Tutte

This paper is a continuation of the Waterloo Research Report CORR 81-12, (see [1]) referred to in what follows as I. That Report is entitled “Chromatic Solutions”. It is largely concerned with a power series h in a variable z2, in which the coefficients are polynomials in a “colour number” λ. By definition the coefficient of z2r, where r > 0, is the sum of the chromatic polynomials of the rooted planar triangulations of 2r faces. (Multiple joins are allowed in these triangulations.) Thus for a positive integral λ the coefficient is the number of λ-coloured rooted planar triangulations of 2r faces. The use of the symbol z2 instead of a simple letter t is for the sake of continuity with earlier papers.In I we consider the case(1)where n is an integer exceeding 4.



1970 ◽  
Vol 13 (1) ◽  
pp. 151-152 ◽  
Author(s):  
J. C. Ahuja

Let X1, X2, …, Xn be n independent and identically distributed random variables having the positive binomial probability function1where 0 < p < 1, and T = {1, 2, …, N}. Define their sum as Y=X1 + X2 + … +Xn. The distribution of the random variable Y has been obtained by Malik [2] using the inversion formula for characteristic functions. It appears that his result needs some correction. The purpose of this note is to give an alternative derivation of the distribution of Y by applying one of the results, established by Patil [3], for the generalized power series distribution.



1963 ◽  
Vol 15 ◽  
pp. 80-83 ◽  
Author(s):  
I. N. Herstein ◽  
W. R. Scott

Let K be a division ring. A subgroup H of the multiplicative group K′ of K is subnormal if there is a finite sequence (H = A0, A1, . . . , An = K′) of subgroups of K′ such that each Ai is a normal subgroup of Ai+1. It is known (2, 3) that if H is a subdivision ring of K such that H′ is subnormal in K′, then either H = K or H is in the centre Z(K) of K.



1990 ◽  
Vol 33 (3) ◽  
pp. 483-490 ◽  
Author(s):  
I. O. York

In this paper, for R a commutative ring, with identity, of characteristic p, we look at the group G(R) of formal power series with coefficients in R, of the formand the group operation being substitution. The results obtained give the exponent of the quotient groups Gn(R) of this group, n∈ℕ.



1988 ◽  
Vol 31 (1) ◽  
pp. 103-110 ◽  
Author(s):  
Jeffrey Bergen ◽  
L. Carini

AbstractLet R be a ring which possesses a unit element, a Lie ideal U ⊄ Z, and a derivation d such that d(U) ≠ 0 and d(u) is 0 or invertible, for all u ∈ U. We prove that R must be either a division ring D or D2, the 2 X 2 matrices over a division ring unless d is not inner, R is not semiprime, and either 2R or 3R is 0. We also examine for which division rings D, D2 can possess such a derivation and study when this derivation must be inner.



1982 ◽  
Vol 34 (3) ◽  
pp. 741-758 ◽  
Author(s):  
W. T. Tutte

Early in the Seventies I sought the number of rooted λ-coloured triangulations of the sphere with 2p faces. In these triangulations double joins, but not loops, were permitted. The investigation soon took the form of a discussion of a certain formal power series l(y, z, λ) in two independent variables y and z.The basic theory of l is set out in [1]. There l is defined as the coefficient of x2 in a more complicated power series g(x, y, z, λ). But the definition is equivalent to the following formula.1Here T denotes a general rooted triangulation. n(T) is the valency of its root-vertex, and 2p(T) is the number of its faces. P(T, λ) is the chromatic polynomial of the graph of T.



Sign in / Sign up

Export Citation Format

Share Document