scholarly journals Laver sequences for extendible and super-almost-huge cardinals

1999 ◽  
Vol 64 (3) ◽  
pp. 963-983 ◽  
Author(s):  
Paul Corazza

AbstractVersions of Laver sequences are known to exist for supercompact and strong cardinals. Assuming very strong axioms of infinity, Laver sequences can be constructed for virtually any globally defined large cardinal not weaker than a strong cardinal; indeed, under strong hypotheses. Laver sequences can be constructed for virtually any regular class of embeddings. We show here that if there is a regular class of embeddings with critical point κ, and there is an inaccessible above κ, then it is consistent for there to be a regular class that admits no Laver sequence. We also show that extendible cardinals are Laver-generating, i.e., that assuming only that κ is extendible, there is an extendible Laver sequence at κ. We use the method of proof to answer a question about Laver-closure of extendible cardinals at inaccessibles. Finally, we consider Laver sequences for super-almost-huge cardinals. Assuming slightly more than super-almost-hugeness, we show that there are super-almost-huge Laver sequences, improving the previously known upper bound for such Laver sequences. We also describe conditions under which the canonical construction of a Laver sequence fails for super-almost-huge cardinals.

1986 ◽  
Vol 51 (3) ◽  
pp. 547-559 ◽  
Author(s):  
Stewart Baldwin

Definition. A cardinal κ is strong iff for every x there is an elementary embedding j:V → M with critical point κ such that x ∈ M.κ is superstrong iff ∃j:V → M with critical point κ such that Vj(κ) ∈ M.These definitions are natural weakenings of supercompactness and hugeness respectively and display some of the same relations. For example, if κ is superstrong then Vκ ⊨ “∃ proper class of strong cardinals”, but the smallest superstrong cardinal is less than the smallest strong cardinal (if both types exist). (See [SRK] and [Mo] for the arguments involving supercompact and huge, which translate routinely to strong and superstrong.)Given any two types of large cardinals, a typical vague question which is often asked is “How large is the gap in consistency strength?” In one sense the gap might be considered relatively small, since the “higher degree” strong cardinals described below (a standard trick that is nearly always available) and the Shelah and Woodin hierarchies of cardinals (see [St] for a definition of these) seem to be (at least at this point in time) the only “natural” large cardinal properties lying between strong cardinals and superstrong cardinals in consistency strength.


2011 ◽  
Vol 76 (2) ◽  
pp. 541-560 ◽  
Author(s):  
Victoria Gitman ◽  
P. D. Welch

AbstractThis paper continues the study of the Ramsey-like large cardinals introduced in [5] and [14]. Ramsey-like cardinals are defined by generalizing the characterization of Ramsey cardinals via the existence of elementary embeddings. Ultrafilters derived from such embeddings are fully iterable and so it is natural to ask about large cardinal notions asserting the existence of ultrafilters allowing only α-many iterations for some countable ordinal α. Here we study such α-iterable cardinals. We show that the α-iterable cardinals form a strict hierarchy for α ≤ ω1, that they are downward absolute to L for , and that the consistency strength of Schindler's remarkable cardinals is strictly between 1-iterable and 2-iterable cardinals.We show that the strongly Ramsey and super Ramsey cardinals from [5] are downward absolute to the core model K. Finally, we use a forcing argument from a strongly Ramsey cardinal to separate the notions of Ramsey and virtually Ramsey cardinals. These were introduced in [14] as an upper bound on the consistency strength of the Intermediate Chang's Conjecture.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chantal David ◽  
Alexandra Florea ◽  
Matilde Lalin

Abstract We prove that there is a positive proportion of L-functions associated to cubic characters over $\mathbb F_q[T]$ that do not vanish at the critical point $s=1/2$ . This is achieved by computing the first mollified moment using techniques previously developed by the authors in their work on the first moment of cubic L-functions, and by obtaining a sharp upper bound for the second mollified moment, building on work of Lester and Radziwiłł, which in turn develops further ideas from the work of Soundararajan, Harper and Radziwiłł. We work in the non-Kummer setting when $q\equiv 2 \,(\mathrm {mod}\,3)$ , but our results could be translated into the Kummer setting when $q\equiv 1\,(\mathrm {mod}\,3)$ as well as into the number-field case (assuming the generalised Riemann hypothesis). Our positive proportion of nonvanishing is explicit, but extremely small, due to the fact that the implied constant in the upper bound for the mollified second moment is very large.


2011 ◽  
Vol 11 (11&12) ◽  
pp. 1019-1027
Author(s):  
Itai Itai Arad

This is not a disproof of the quantum PCP conjecture! In this note we use perturbation on the commuting Hamiltonian problem on a graph, based on results by Bravyi and Vyalyi, to provide a very partial no-go theorem for quantum PCP. Specifically, we derive an upper bound on how large the promise gap can be for the quantum PCP still to hold, as a function of the non-commuteness of the system. As the system becomes more and more commuting, the maximal promise gap shrinks. We view these results as possibly a preliminary step towards disproving the quantum PCP conjecture posed in \cite{ref:Aha09}. A different way to view these results is actually as indications that a critical point exists, beyond which quantum PCP indeed holds; in any case, we hope that these results will lead to progress on this important open problem.


2021 ◽  
pp. 2150024
Author(s):  
Trevor M. Wilson

We show that Weak Vopěnka’s Principle, which is the statement that the opposite category of ordinals cannot be fully embedded into the category of graphs, is equivalent to the large cardinal principle Ord is Woodin, which says that for every class [Formula: see text] there is a [Formula: see text]-strong cardinal. Weak Vopěnka’s Principle was already known to imply the existence of a proper class of measurable cardinals. We improve this lower bound to the optimal one by defining structures whose nontrivial homomorphisms can be used as extenders, thereby producing elementary embeddings witnessing [Formula: see text]-strongness of some cardinal.


2009 ◽  
Vol 74 (4) ◽  
pp. 1081-1099 ◽  
Author(s):  
Matthew Foreman

Many classical statements of set theory are settled by the existence of generic elementary embeddings that are analogous the elementary embeddings posited by large cardinals. [2] The embeddings analogous to measurable cardinals are determined by uniform, κ-complete precipitous ideals on cardinals κ. Stronger embeddings, analogous to those originating from supercompact or huge cardinals are encoded by normal fine ideals on sets such as [κ]<λ or [κ]λ.The embeddings generated from these ideals are limited in ways analogous to conventional large cardinals. Explicitly, if j: V → M is a generic elementary embedding with critical point κ and λ supnЄωjn(κ) and the forcing yielding j is λ-saturated then j“λ+ ∉ M. (See [2].)Ideals that yield embeddings that are analogous to strongly compact cardinals have more puzzling behavior and the analogy is not as straightforward. Some natural ideal properties of this kind have been shown to be inconsistent:Theorem 1 (Kunen). There is no ω2-saturated, countably complete uniform ideal on any cardinal in the interval [ℵω, ℵω).Generic embeddings that arise from countably complete, ω2-saturated ideals have the property that sup . So the Kunen result is striking in that it apparently allows strong ideals to exist above the conventional large cardinal limitations. The main result of this paper is that it is consistent (relative to a huge cardinal) that such ideals exist.


1994 ◽  
Vol 59 (4) ◽  
pp. 1420-1432 ◽  
Author(s):  
P. D. Welch

AbstractA small large cardinal upper bound in V for proving when certain subsets of ω1 (including the universally Baire subsets) are precisely those constructible from a real is given. In the core model we find an exact equivalence in terms of the length of the mouse order; we show that ∀B ⊆ ω1 [B is universally Baire ⇔ B ϵ L[r] for some real r] is preserved under set-sized forcing extensions if and only if there are arbitrarily large “admissibly measurable” cardinals.


2013 ◽  
Vol 23 (06) ◽  
pp. 1350106 ◽  
Author(s):  
HAIHUA LIANG ◽  
JIANFENG HUANG

This paper is concerned with the bifurcation of limit cycles from the period annulus of a quadratic reversible system. The outer boundary of the period annulus contains a degenerate critical point. The exact upper bound of the number of limit cycles is given. Our result shows that the conjecture on the cyclicity of (r4) system is correct.


1993 ◽  
Vol 58 (3) ◽  
pp. 931-940 ◽  
Author(s):  
J. R. Steel

Let E ⊲ F iff E and F are extenders and E ∈ Ult(V, F). Intuitively, E ⊲ F implies that E is weaker—embodies less reflection—than F. The relation ⊲ was first considered by W. Mitchell in [M74], where it arises naturally in connection with inner models and coherent sequences. Mitchell showed in [M74] that the restriction of ⊲ to normal ultrafilters is well-founded.The relation ⊲ is now known as the Mitchell order, although it is not actually an order. It is irreflexive, and its restriction to normal ultrafilters is transitive, but under mild large cardinal hypotheses, it is not transitive on all extenders. Here is a counterexample. Let κ be (λ + 2)-strong, where λ > κ and λ is measurable. Let E be an extender with critical point κ and let U be a normal ultrafilter with critical point λ such that U ∈ Ult(V, E). Let i: V → Ult(V, U) be the canonical embedding. Then i(E) ⊲ U and U ⊲ E, but by 3.11 of [MS2], it is not the case that i(E) ⊲ E. (The referee pointed out the following elementary proof of this fact. Notice that i ↾ Vλ+2 ∈ Ult(V, E) and X ∈ Ea ⇔ X ∈ i(E)i(a). Moreover, we may assume without loss of generality that = support(E). Thus, if i(E) ∈ Ult(V, E), then E ∈ Ult(V, E), a contradiction.)By going to much stronger extenders, one can show the Mitchell order is not well-founded. The following example is well known. Let j: V → M be elementary, with Vλ ⊆ M for λ = joω(crit(j)). (By Kunen, Vλ+1 ∉ M.) Let E0 be the (crit(j), λ) extender derived from j, and let En+1 = i(En), where i: V → Ult(V, En) is the canonical embedding. One can show inductively that En is an extender over V, and thereby, that En+1 ⊲ En for all n < ω. (There is a little work in showing that Ult(V, En+1) is well-founded.)


2011 ◽  
Vol 76 (2) ◽  
pp. 719-728
Author(s):  
P. D. Welch

AbstractWe give limits defined in terms of abstract pointclasses of the amount of determinacy available in certain canonical inner models involving strong cardinals. We show for example:Theorem A. Det(-IND) ⇒ there exists an inner model with a strong cardinal.Theorem B. Det(AQI) ⇒ there exist type-l mice and hence inner models with proper classes of strong cardinals.where -IND(AQI) is the pointclass of boldface -inductive (respectively arithmetically quasi-inductive) sets of reals.


Sign in / Sign up

Export Citation Format

Share Document