A note about a partial no-go theorem for quantum PCP

2011 ◽  
Vol 11 (11&12) ◽  
pp. 1019-1027
Author(s):  
Itai Itai Arad

This is not a disproof of the quantum PCP conjecture! In this note we use perturbation on the commuting Hamiltonian problem on a graph, based on results by Bravyi and Vyalyi, to provide a very partial no-go theorem for quantum PCP. Specifically, we derive an upper bound on how large the promise gap can be for the quantum PCP still to hold, as a function of the non-commuteness of the system. As the system becomes more and more commuting, the maximal promise gap shrinks. We view these results as possibly a preliminary step towards disproving the quantum PCP conjecture posed in \cite{ref:Aha09}. A different way to view these results is actually as indications that a critical point exists, beyond which quantum PCP indeed holds; in any case, we hope that these results will lead to progress on this important open problem.

1999 ◽  
Vol 64 (3) ◽  
pp. 963-983 ◽  
Author(s):  
Paul Corazza

AbstractVersions of Laver sequences are known to exist for supercompact and strong cardinals. Assuming very strong axioms of infinity, Laver sequences can be constructed for virtually any globally defined large cardinal not weaker than a strong cardinal; indeed, under strong hypotheses. Laver sequences can be constructed for virtually any regular class of embeddings. We show here that if there is a regular class of embeddings with critical point κ, and there is an inaccessible above κ, then it is consistent for there to be a regular class that admits no Laver sequence. We also show that extendible cardinals are Laver-generating, i.e., that assuming only that κ is extendible, there is an extendible Laver sequence at κ. We use the method of proof to answer a question about Laver-closure of extendible cardinals at inaccessibles. Finally, we consider Laver sequences for super-almost-huge cardinals. Assuming slightly more than super-almost-hugeness, we show that there are super-almost-huge Laver sequences, improving the previously known upper bound for such Laver sequences. We also describe conditions under which the canonical construction of a Laver sequence fails for super-almost-huge cardinals.


2018 ◽  
Vol 28 (3) ◽  
pp. 365-387
Author(s):  
S. CANNON ◽  
D. A. LEVIN ◽  
A. STAUFFER

We give the first polynomial upper bound on the mixing time of the edge-flip Markov chain for unbiased dyadic tilings, resolving an open problem originally posed by Janson, Randall and Spencer in 2002 [14]. A dyadic tiling of size n is a tiling of the unit square by n non-overlapping dyadic rectangles, each of area 1/n, where a dyadic rectangle is any rectangle that can be written in the form [a2−s, (a + 1)2−s] × [b2−t, (b + 1)2−t] for a, b, s, t ∈ ℤ⩾ 0. The edge-flip Markov chain selects a random edge of the tiling and replaces it with its perpendicular bisector if doing so yields a valid dyadic tiling. Specifically, we show that the relaxation time of the edge-flip Markov chain for dyadic tilings is at most O(n4.09), which implies that the mixing time is at most O(n5.09). We complement this by showing that the relaxation time is at least Ω(n1.38), improving upon the previously best lower bound of Ω(n log n) coming from the diameter of the chain.


2015 ◽  
Vol 29 (1) ◽  
pp. 93-117
Author(s):  
Mieczysław Kula ◽  
Małgorzata Serwecińska

AbstractThe paper is devoted to the communication complexity of lattice operations in linearly ordered finite sets. All well known techniques ([4, Chapter 1]) to determine the communication complexity of the infimum function in linear lattices disappoint, because a gap between the lower and upper bound is equal to O(log2n), where n is the cardinality of the lattice. Therefore our aim will be to investigate the communication complexity of the function more carefully. We consider a family of so called interval protocols and we construct the interval protocols for the infimum. We prove that the constructed protocols are optimal in the family of interval protocols. It is still open problem to compute the communication complexity of constructed protocols but the numerical experiments show that their complexity is less than the complexity of known protocols for the infimum function.


Author(s):  
Yusuke Naito

PMAC is a rate-1, parallelizable, block-cipher-based message authentication code (MAC), proposed by Black and Rogaway (EUROCRYPT 2002). Improving the security bound is a main research topic for PMAC. In particular, showing a tight bound is the primary goal of the research, since Luykx et al.’s paper (EUROCRYPT 2016). Regarding the pseudo-random-function (PRF) security of PMAC, a collision of the hash function, or the difference between a random permutation and a random function offers the lower bound Ω(q2/2n) for q queries and the block cipher size n. Regarding the MAC security (unforgeability), a hash collision for MAC queries, or guessing a tag offers the lower bound Ω(q2m /2n + qv/2n) for qm MAC queries and qv verification queries (forgery attempts). The tight upper bound of the PRF-security O(q2/2n) of PMAC was given by Gaži et el. (ToSC 2017, Issue 1), but their proof requires a 4-wise independent masking scheme that uses 4 n-bit random values. Open problems from their work are: (1) find a masking scheme with three or less random values with which PMAC has the tight upper bound for PRF-security; (2) find a masking scheme with which PMAC has the tight upper bound for MAC-security.In this paper, we consider PMAC with two powering-up masks that uses two random values for the masking scheme. Using the structure of the powering-up masking scheme, we show that the PMAC has the tight upper bound O(q2/2n) for PRF-security, which answers the open problem (1), and the tight upper bound O(q2m /2n + qv/2n) for MAC-security, which answers the open problem (2). Note that these results deal with two-key PMACs, thus showing tight upper bounds of PMACs with single-key and/or with one powering-up mask are open problems.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chantal David ◽  
Alexandra Florea ◽  
Matilde Lalin

Abstract We prove that there is a positive proportion of L-functions associated to cubic characters over $\mathbb F_q[T]$ that do not vanish at the critical point $s=1/2$ . This is achieved by computing the first mollified moment using techniques previously developed by the authors in their work on the first moment of cubic L-functions, and by obtaining a sharp upper bound for the second mollified moment, building on work of Lester and Radziwiłł, which in turn develops further ideas from the work of Soundararajan, Harper and Radziwiłł. We work in the non-Kummer setting when $q\equiv 2 \,(\mathrm {mod}\,3)$ , but our results could be translated into the Kummer setting when $q\equiv 1\,(\mathrm {mod}\,3)$ as well as into the number-field case (assuming the generalised Riemann hypothesis). Our positive proportion of nonvanishing is explicit, but extremely small, due to the fact that the implied constant in the upper bound for the mollified second moment is very large.


Fractals ◽  
2009 ◽  
Vol 17 (02) ◽  
pp. 137-148
Author(s):  
PÉTER MÓRA

It is well-known that the Hausdorff dimension of the Sierpinski triangle Λ is s = log 3/ log 2. However, it is a long standing open problem to compute the s-dimensional Hausdorff measure of Λ denoted by [Formula: see text]. In the literature the best existing estimate is [Formula: see text] In this paper we improve significantly the lower bound. We also give an upper bound which is weaker than the one above but everybody can check it easily. Namely, we prove that [Formula: see text] holds.


2011 ◽  
Vol 76 (2) ◽  
pp. 368-376 ◽  
Author(s):  
Mark Fulk

AbstractResults in recursion-theoretic inductive inference have been criticized as depending on unrealistic self-referential examples. J. M. Bārzdiņš proposed a way of ruling out such examples, and conjectured that one of the earliest results of inductive inference theory would fall if his method were used. In this paper we refute Bārzdiņš' conjecture.We propose a new line of research examining robust separations; these are defined using a strengthening of Bārzdiņš' original idea. The preliminary results of the new line of research are presented, and the most important open problem is stated as a conjecture. Finally, we discuss the extension of this work from function learning to formal language learning.


2017 ◽  
Vol 114 (43) ◽  
pp. 11380-11385 ◽  
Author(s):  
Noah E. Friedkin ◽  
Francesco Bullo

How truth wins in social groups is an important open problem. Classic experiments on social groups dealing with truth statement issues present mixed findings on the conditions of truth abandonment and reaching a consensus on the truth. No theory has been developed and evaluated that might integrate these findings with a mathematical model of the interpersonal influence system that alters some or all of its members’ positions on an issue. In this paper we provide evidence that a general model in the network science on opinion dynamics substantially clarifies how truth wins in groups.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 400
Author(s):  
Arne Heimendahl ◽  
Felipe Montealegre-Mora ◽  
Frank Vallentin ◽  
David Gross

The Gottesman-Knill theorem states that a Clifford circuit acting on stabilizer states can be simulated efficiently on a classical computer. Recently, this result has been generalized to cover inputs that are close to a coherent superposition of logarithmically many stabilizer states. The runtime of the classical simulation is governed by the stabilizer extent, which roughly measures how many stabilizer states are needed to approximate the state. An important open problem is to decide whether the extent is multiplicative under tensor products. An affirmative answer would yield an efficient algorithm for computing the extent of product inputs, while a negative result implies the existence of more efficient classical algorithms for simulating largescale quantum circuits. Here, we answer this question in the negative. Our result follows from very general properties of the set of stabilizer states, such as having a size that scales subexponentially in the dimension, and can thus be readily adapted to similar constructions for other resource theories.


Author(s):  
David Simchi-Levi ◽  
Yunzong Xu

We consider the general (stochastic) contextual bandit problem under the realizability assumption, that is, the expected reward, as a function of contexts and actions, belongs to a general function class [Formula: see text]. We design a fast and simple algorithm that achieves the statistically optimal regret with only [Formula: see text] calls to an offline regression oracle across all T rounds. The number of oracle calls can be further reduced to [Formula: see text] if T is known in advance. Our results provide the first universal and optimal reduction from contextual bandits to offline regression, solving an important open problem in the contextual bandit literature. A direct consequence of our results is that any advances in offline regression immediately translate to contextual bandits, statistically and computationally. This leads to faster algorithms and improved regret guarantees for broader classes of contextual bandit problems.


Sign in / Sign up

Export Citation Format

Share Document