Successive weakly compact or singular cardinals

1999 ◽  
Vol 64 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Ralf-Dieter Schindler

AbstractIt is shown in ZF that if δ < δ+ < Ω are such that δ and δ+ are either both weakly compact or singular cardinals and Ω is large enough for putting the core model apparatus into action then there is an inner model with a Woodin cardinal.

2018 ◽  
Vol 83 (3) ◽  
pp. 920-938
Author(s):  
GUNTER FUCHS ◽  
RALF SCHINDLER

AbstractIt is shown that $K|{\omega _1}$ need not be solid in the sense previously introduced by the authors: it is consistent that there is no inner model with a Woodin cardinal yet there is an inner model W and a Cohen real x over W such that $K|{\omega _1}\,\, \in \,\,W[x] \setminus W$. However, if ${0^{\rm{\P}}}$ does not exist and $\kappa \ge {\omega _2}$ is a cardinal, then $K|\kappa$ is solid. We draw the conclusion that solidity is not forcing absolute in general, and that under the assumption of $\neg {0^{\rm{\P}}}$, the core model is contained in the solid core, previously introduced by the authors.It is also shown, assuming ${0^{\rm{\P}}}$ does not exist, that if there is a forcing that preserves ${\omega _1}$, forces that every real has a sharp, and increases $\delta _2^1$, then ${\omega _1}$ is measurable in K.


2010 ◽  
Vol 75 (4) ◽  
pp. 1383-1402 ◽  
Author(s):  
James Cummings ◽  
Matthew Foreman

§1. Introduction. It is a well-known phenomenon in set theory that problems in infinite combinatorics involving singular cardinals and their successors tend to be harder than the parallel problems for regular cardinals. Examples include the behaviour of cardinal exponentiation, the extent of the tree property, the extent of stationary reflection, and the existence of non-free almost-free abelian groups. The explanation for this phenomenon lies in inner model theory, in particular core models and covering lemmas. If W is an inner model of V then1. W strongly covers V if every uncountable set of ordinals is covered by a set of the same V -cardinality lying in W.2. W weakly covers V if W computes the successor of every V-singular cardinal correctly.Strong covering implies weak covering.In inner model theory there are many theorems of the general form “if there is no inner model of large cardinal hypothesis X then there is an L-like inner model Kx which Y covers V”. Here the L-like properties of Kx always include GCH and Global Square. Examples include1. X is “0# exists”, Kx is L, Y is “strongly”.2. X is “there is a measurable cardinal”, Kx is the Dodd-Jensen core model, Y is “strongly”.3. X is “there is a Woodin cardinal”, Kx is the core model for a Woodin cardinal, Y is “weakly”.


1999 ◽  
Vol 64 (3) ◽  
pp. 1065-1086 ◽  
Author(s):  
W. J. Mitchell

AbstractWe show that if there is no inner model with a Woodin cardinal and the Steel core model K exists, then every Jónsson cardinal is Ramsey in K, and every δ-Jónsson cardinal is δ5-Erdős in K.In the absence of the Steel core model K we prove the same conclusion for any model L[] such that either V = L[] is the minimal model for a Woodin cardinal, or there is no inner model with a Woodin cardinal and V is a generic extension of L[].The proof includes one lemma of independent interest: If V = L[A], where A ⊂ κ and κ is regular, then Lκ[A] is a Jónsson algebra. The proof of this result. Lemma 2.5, is very short and entirely elementary.


2013 ◽  
Vol 78 (3) ◽  
pp. 708-734 ◽  
Author(s):  
Ronald Jensen ◽  
John Steel

AbstractWe show in ZFC that if there is no proper class inner model with a Woodin cardinal, then there is an absolutely definablecore modelthat is close toVin various ways.


1999 ◽  
Vol 64 (3) ◽  
pp. 1087-1110 ◽  
Author(s):  
Ernest Schimmerling

Definition 1.1. Suppose that λ ≤ κ are cardinals and Γ is a subset of (κ, κ+). By , we mean the principle asserting that there is a sequence 〈Fν | ν ∈ lim(Γ)〉 such that for every ν ∈ lim(Γ), the following hold.(1) 1 ≤ card(Fν) < λ.(2) The following hold for every C ∈ Fν.(a) C ⊆ ν ∩ Γ,(b) C is club in ν,(c) o.t.(C) ≤ κ,By we mean . If Γ = (κ, κ+), then we write for and for .These weak square principles were introduced in [Sch2, 5.1]. They generalize Jensen's principles □κ and , which are equivalent to and respectively. Jensen's global □ principle implies □κ for all κ.Theorem 1.2. Suppose that is a core model. Assume that every countable premouse M which elementarily embeds into a level of is (ω1 + 1)-iterable. Then, for every κ, holds in .The minimal non-1-small mouse is essentially a sharp for an inner model with a Woodin cardinal. We originally proved Theorem 1.2 under the assumption that is 1-small, building on [MiSt] and [Sch2]. Some generalizations followed by combining our methods with those of [St2] and [SchSt2]. (For example, the tame countably certified core model Kc satisfies .) In order to eliminate the smallness assumption all together, one replaces our use of the Dodd-Jensen lemma in proofs of condensation properties for with the weak Dodd-Jensen lemma of [NSt].


2004 ◽  
Vol 10 (4) ◽  
pp. 583-588
Author(s):  
Martin Zeman

1998 ◽  
Vol 63 (4) ◽  
pp. 1393-1398
Author(s):  
William J. Mitchell

AbstractIf there is no inner model with a cardinal κ such that ο(κ) = κ++ then the set K ∩ Hω1 is definable over Hω1 by a Δ4 formula, and the set of countable initial segments of the core model is definable over Hω1 by a Π3 formula. We show that if there is an inner model with infinitely many measurable cardinals then there is a model in which is not definable Σ3 by any Σ3 formula, and K ∩ Hω1 is not definable by any boolean combination of Σ3 formulas.


1996 ◽  
Vol 61 (1) ◽  
pp. 293-312 ◽  
Author(s):  
P. D. Welch

AbstractWe follow [8] in asking when a set of ordinals X ⊆ α is a countable union of sets in K, the core model. We show that, analogously to L, an X closed under the canonical Σ1 Skolem function for Kα can be so decomposed provided K is such that no ω-closed filters are put on its measure sequence, but not otherwise. This proviso holds if there is no inner model of a weak Erdős-type property.


1984 ◽  
Vol 49 (4) ◽  
pp. 1198-1204 ◽  
Author(s):  
Peter Koepke

A subset X of a structure S is called free in S if ∀x ∈ Xx ∉ S[X − {x}]; here, S[Y] is the substructure of S generated from Y by the functions of S. For κ, λ, μ cardinals, let Frμ(κ, λ) be the assertion:for every structure S with κ ⊂ S which has at most μ functions and relations there is a subset X ⊂ κ free in S of cardinality ≥ λ.We show that Frω(ωω, ω), the free-subset property for ωω, is equiconsistent with the existence of a measurable cardinal (2.2,4.4). This answers a question of Devlin [De].In the first section of this paper we prove some combinatorial facts about Frμ(κ, λ); in particular the first cardinal κ such that Frω(κ, ω) is weakly inaccessible or of cofinality ω (1.2). The second section shows that, under Frω(ωω, ω), ωω is measurable in an inner model. For the convenience of readers not acquainted with the core model κ, we first deduce the existence of 0# (2.1) using the inner model L. Then we adapt the proof to the core model and obtain that ωω is measurable in an inner model. For the reverse direction, we essentially apply a construction of Shelah [Sh] who forced Frω(ωω, ω) over a ground model which contains an ω-sequence of measurable cardinals. We show in §4 that indeed a coherent sequence of Ramsey cardinals suffices. In §3 we obtain such a sequence as an endsegment of a Prikry sequence.


Author(s):  
William J. Mitchell

The model K() presented in this paper is a new inner model of ZFC which can contain measurable cardinals of high order. Like the model L() of [14], from which it is derived, K() is constructed from a sequence of filters such that K() satisfies for each (α, β) ε domain () that (α,β) is a measure of order β on α and the only measures in K() are the measures (α,β). Furthermore K(), like L(), has many of the basic properties of L: the GCH and ⃟ hold and there is a definable well ordering which is on the reals. The model K() is derived from L() by using techniques of Dodd and Jensen [2–5] to build in absoluteness for measurability and related properties.


Sign in / Sign up

Export Citation Format

Share Document