scholarly journals Groups whose irreducible representations have finite degree II

1982 ◽  
Vol 25 (3) ◽  
pp. 237-243 ◽  
Author(s):  
B. A. F. Wehrfritz

If F is a (commutative) field let denote the class of all groups G such that every irreducible FG-module has finite dimension over F. The introduction to [7] contains motivation for considering these classes and surveys some of the results to date concerning them. In [7] for every field F we determined the finitely generated soluble groups in . Here, for fields F of characteristic zero, we determine, at least in principle, the soluble groups in . Our main result is the following.

1982 ◽  
Vol 91 (3) ◽  
pp. 397-406 ◽  
Author(s):  
B. A. F. Wehrfritz

If F is a (commutative) field let XF denote the class of all groups G such that every irreducible FG module has finite dimension over F. In the first paper (9) of this series we classified finitely generated soluble XF-groups for each field F and in the second (10) we characterized soluble XF-groups for each field F of characteristic zero. Here we consider soluble XF-groups over fields F of positive characteristic.


Author(s):  
B. A. F. Wehrfritz

Throughout this paper F denotes a (commutative) field. Let XF denote the class of all groups G such that every irreducible FC-module has finite dimension over F. In (1) P. Hall showed that if F is not locally finite and if G is polycyclic, then G∈XF if and only if G is abelian-by-finite. Also in (1), if F is locally finite he proved that every finitely generated nilpotent group is in XF and he conjectured that XF should contain every polycyclic group. This turned out to be very difficult, but a positive solution was eventually found by Roseblade, see (8). Meanwhile Levič in (4) had started a systematic investigation of the classes XF. Although his paper contains a number of errors, obscurities and omissions, it remains an interesting work, and it, or more accurately its recent translation, stimulated this present paper.


1975 ◽  
Vol 27 (6) ◽  
pp. 1355-1360 ◽  
Author(s):  
B. A. F. Wehrfritz

In [3] Remeslennikov proves that a finitely generated metabelian group G has a faithful representation of finite degree over some field F of characteristic zero (respectively, p > 0) if its derived group G’ is torsion-free (respectively, of exponent p). By the Lie-Kolchin-Mal'cev theorem any metabelian subgroup of GL(n, F) has a subgroup of finite index whose derived group is torsion-free if char F = 0 and is a p-group of finite exponent if char F = p > 0. Moreover every finite extension of a group with a faithful representation (of finite degree) has a faithful representation over the same field. Thus Remeslennikov's results have a gap which we propose here to fill.


1954 ◽  
Vol 2 (1) ◽  
pp. 1-36 ◽  
Author(s):  
Hans Zassenhaus

There are some simple facts which distinguish Lie-algebras over fields of prime characteristic from Lie-algebras over fields of characteristic zero. These are(1) The degrees of the absolutely irreducible representations of a Lie-algebra of prime characteristic are bounded whereas, according to a theorem of H. Weyl, the degrees of the absolutely irreducible representations of a semi-simple Lie-algebra over a field of characteristic zero can be arbitrarily high.(2) For each Lie-algebra of prime characteristic there are indecomposable representations which are not irreducible, whereas every indecomposable representation of a semi-simple Liealgebra over a field of characteristic zero is irreducible (cf. [4]).(3) The quotient ring of the embedding algebra of a Lie-algebra over a field of prime characteristic is a division algebra of finite dimension over its center, whereas this is not the case for characteristic zero. (cf. [4]).(4) There are faithful fully reducible representations of every Lie-algebra of prime characteristic, whereas for characteristic zero only ring sums of semi-simple Lie-algebras and abelian Lie-algebras admit faithful fully reducible representations (cf. [6], [2], [4]).


Author(s):  
A.V. Tushev

We develop some tecniques whish allow us to apply the methods of commutative algebra for studing the representations of nilpotent groups. Using these methods, in particular, we show that any irreducible representation of a finitely generated nilpotent group G over a finitely generated field of characteristic zero is induced from a primitive representation of some subgroup of G.


1971 ◽  
Vol 14 (1) ◽  
pp. 113-115 ◽  
Author(s):  
F. W. Lemire

Let L denote a finite-dimensional simple Lie algebra over an algebraically closed field K of characteristic zero. It is well known that every finite-dimension 1, irreducible representation of L admits a weight space decomposition; moreover every irreducible representation of L having at least one weight space admits a weight space decomposition.


Author(s):  
A. V. Tushev

In the paper, we study finitely generated linear groups of finite rank which have faithful irreducible primitive representations over a field of characteristic zero. We prove that if an infinite finitely generated linear group [Formula: see text] of finite rank has a faithful irreducible primitive representation over a field of characteristic zero then the [Formula: see text]-center [Formula: see text] of [Formula: see text] is infinite.


1987 ◽  
Vol 107 ◽  
pp. 63-68 ◽  
Author(s):  
George Kempf

Let H be the Levi subgroup of a parabolic subgroup of a split reductive group G. In characteristic zero, an irreducible representation V of G decomposes when restricted to H into a sum V = ⊕mαWα where the Wα’s are distinct irreducible representations of H. We will give a formula for the multiplicities mα. When H is the maximal torus, this formula is Weyl’s character formula. In theory one may deduce the general formula from Weyl’s result but I do not know how to do this.


2010 ◽  
Vol 06 (03) ◽  
pp. 579-586 ◽  
Author(s):  
ARNO FEHM ◽  
SEBASTIAN PETERSEN

A field K is called ample if every smooth K-curve that has a K-rational point has infinitely many of them. We prove two theorems to support the following conjecture, which is inspired by classical infinite rank results: Every non-zero Abelian variety A over an ample field K which is not algebraic over a finite field has infinite rank. First, the ℤ(p)-module A(K) ⊗ ℤ(p) is not finitely generated, where p is the characteristic of K. In particular, the conjecture holds for fields of characteristic zero. Second, if K is an infinite finitely generated field and S is a finite set of local primes of K, then every Abelian variety over K acquires infinite rank over certain subfields of the maximal totally S-adic Galois extension of K. This strengthens a recent infinite rank result of Geyer and Jarden.


Sign in / Sign up

Export Citation Format

Share Document