Constructive definition of certain analytic sets of numbers

1959 ◽  
Vol 24 (1) ◽  
pp. 37-49 ◽  
Author(s):  
P. Lorenzen ◽  
J. Myhill

According to Kleene [8] and Post [13] the definition of recursive relations (or sets) can be given most simply via the definition of recursively enumerable (r.e.) relations. The latter can be defined by finite systems of finite rules for deriving strings of symbols, each rule being of the form each formula or being obtained by juxtaposition from atomic symbols and variables ranging over strings of atomic symbols.

1956 ◽  
Vol 21 (1) ◽  
pp. 49-51 ◽  
Author(s):  
John Myhill

We presuppose the terminology of [1], and we give a negative answer to the following problem ([1], p. 19): Does every essentially undecidable axiomatizable theory have an essentially undecidable finitely axiomatizable subtheory?We use the following theorem of Kleene ([2], p. 311). There exist two recursively enumerable sets α and β such that (1) α and β are disjoint (2) there is no recursive set η for which α ⊂ η, β ⊂ η′. By the definition of recursive enumerability, there are recursive predicates Φ and Ψ for whichWe now specify a theory T which will afford a counter-example to the given problem of Tarski. The only non-logical constants of T are two binary predicates P and Q, one unary operation symbol S, and one individual constant 0. As in ([1], p. 52) we defineThe only non-logical axioms of T are the formulae P(Δm, Δn) for all pairs of integers m, n satisfying Δ(m, n); the formulae Q(Δm, Δn) for all pairs of integers m, n satisfying Ψ(m, n); and the formulaT is consistent, since it has a model. It remains to show that (1) every consistent extension of T is undecidable (2) if T1 is a finitely axiomatizable subtheory of T, there exists a consistent and decidable extension of T1 which has the same constants as T1.


2012 ◽  
Vol 96 (536) ◽  
pp. 213-220
Author(s):  
Harlan J. Brothers

Pascal's triangle is well known for its numerous connections to probability theory [1], combinatorics, Euclidean geometry, fractal geometry, and many number sequences including the Fibonacci series [2,3,4]. It also has a deep connection to the base of natural logarithms, e [5]. This link to e can be used as a springboard for generating a family of related triangles that together create a rich combinatoric object.2. From Pascal to LeibnizIn Brothers [5], the author shows that the growth of Pascal's triangle is related to the limit definition of e.Specifically, we define the sequence sn; as follows [6]:


1963 ◽  
Vol 14 (1) ◽  
pp. 75-104 ◽  
Author(s):  
G. J. Hancock

SummaryThe validity and applicability of the static margin (stick fixed) Kn,where as defined by Gates and Lyon is shown to be restricted to the conventional flexible aircraft. Alternative suggestions for the definition of static margin are put forward which can be equally applied to the conventional flexible aircraft of the past and the integrated flexible aircraft of the future. Calculations have been carried out on simple slender plate models with both linear and non-linear aerodynamic forces to assess their static stability characteristics.


1984 ◽  
Vol 49 (3) ◽  
pp. 818-829 ◽  
Author(s):  
J. P. Jones ◽  
Y. V. Matijasevič

The purpose of the present paper is to give a new, simple proof of the theorem of M. Davis, H. Putnam and J. Robinson [1961], which states that every recursively enumerable relation A(a1, …, an) is exponential diophantine, i.e. can be represented in the formwhere a1 …, an, x1, …, xm range over natural numbers and R and S are functions built up from these variables and natural number constants by the operations of addition, A + B, multiplication, AB, and exponentiation, AB. We refer to the variables a1,…,an as parameters and the variables x1 …, xm as unknowns.Historically, the Davis, Putnam and Robinson theorem was one of the important steps in the eventual solution of Hilbert's tenth problem by the second author [1970], who proved that the exponential relation, a = bc, is diophantine, and hence that the right side of (1) can be replaced by a polynomial equation. But this part will not be reproved here. Readers wishing to read about the proof of that are directed to the papers of Y. Matijasevič [1971a], M. Davis [1973], Y. Matijasevič and J. Robinson [1975] or C. Smoryński [1972]. We concern ourselves here for the most part only with exponential diophantine equations until §5 where we mention a few consequences for the class NP of sets computable in nondeterministic polynomial time.


1987 ◽  
Vol 39 (4) ◽  
pp. 784-793 ◽  
Author(s):  
Michael J. Kallaher

Let (Q, +, ·) be a finite quasifield of dimension d over its kernel K = GF(q), where q = pk with p a prime and k ≧ 1. (See p. 18-22 and p. 74 of [7] or Section 5 of [9] for the definition of quasifield.) For the remainder of this article we will follow standard conventions and omit, whenever possible, the binary operations + and · in discussing a quasifield. For example, the notation Q will be used in place of the triple (Q, +, ·) and Q* will be used to represent the multiplicative loop (Q − {0}, ·).Let m be a non-zero element of the quasifield Q; the right multiplicative mapping ρm:Q → Q is defined by1


1957 ◽  
Vol 9 ◽  
pp. 459-464 ◽  
Author(s):  
P. G. Rooney

The inversion theory of the Gauss transformation has been the subject of recent work by several authors. If the transformation is defined by1.1,then operational methods indicate that,under a suitable definition of the differential operator.


1985 ◽  
Vol 37 (4) ◽  
pp. 664-681 ◽  
Author(s):  
Zoltán Magyar ◽  
Zoltán Sebestyén

The theory of noncommutative involutive Banach algebras (briefly Banach *-algebras) owes its origin to Gelfand and Naimark, who proved in 1943 the fundamental representation theorem that a Banach *-algebra with C*-condition(C*)is *-isomorphic and isometric to a norm-closed self-adjoint subalgebra of all bounded operators on a suitable Hilbert space.At the same time they conjectured that the C*-condition can be replaced by the B*-condition.(B*)In other words any B*-algebra is actually a C*-algebra. This was shown by Glimm and Kadison [5] in 1960.


1971 ◽  
Vol 23 (3) ◽  
pp. 445-450 ◽  
Author(s):  
L. Terrell Gardner

0. In [3], Fell introduced a topology on Rep (A,H), the collection of all non-null but possibly degenerate *-representations of the C*-algebra A on the Hilbert space H. This topology, which we will call the Fell topology, can be described by giving, as basic open neighbourhoods of π0 ∈ Rep(A, H), sets of the formwhere the ai ∈ A, and the ξj ∈ H(π0), the essential space of π0 [4].A principal result of [3, Theorem 3.1] is that if the Hilbert dimension of H is large enough to admit all irreducible representations of A, then the quotient space Irr(A, H)/∼ can be identified with the spectrum (or “dual“) Â of A, in its hull-kernel topology.


1958 ◽  
Vol 23 (2) ◽  
pp. 183-187 ◽  
Author(s):  
Martin Davis ◽  
Hilary Putnam

Hilbert's tenth problem is to find an algorithm for determining whether or not a diophantine equation possesses solutions. A diophantine predicate (of positive integers) is defined to be one of the formwhere P is a polynomial with integral coefficients (positive, negative, or zero). Previous work has considered the variables as ranging over nonnegative integers; but we shall find it more useful here to restrict the range to positive integers, no essential change being thereby introduced. It is clear that the recursive unsolvability of Hilbert's tenth problem would follow if one could show that some non-recursive predicate were diophantine. In particular, it would suffice to show that every recursively enumerable predicate is diophantine. Actually, it would suffice to prove far less.


1937 ◽  
Vol 2 (4) ◽  
pp. 164-164 ◽  
Author(s):  
A. M. Turing

In the theory of conversion it is important to have a formally defined function which assigns to any positive integer n the least integer not less than n which has a given property. The definition of such a formula is somewhat involved: I propose to give the corresponding formula in λ-K-conversion, which will (naturally) be much simpler. I shall in fact find a formula þ such that if T be a formula for which T(n) is convertible to a formula representing a natural number, whenever n represents a natural number, then þ(T, r) is convertible to the formula q representing the least natural number q, not less than r, for which T(q) conv 0.2 The method depends on finding a formula Θ with the property that Θ conv λu·u(Θ(u)), and consequently if M→Θ(V) then M conv V(M). A formula with this property is,The formula þ will have the required property if þ(T, r) conv r when T(r) conv 0, and þ(T, r) conv þ(T, S(r)) otherwise. These conditions will be satisfied if þ(T, r) conv T(r, λx·þ(T, S(r)), r), i.e. if þ conv {λptr·t(r, λx·p(t, S(r)), r)}(þ). We therefore put,This enables us to define also a formula,such that (T, n) is convertible to the formula representing the nth positive integer q for which T(q) conv 0.


Sign in / Sign up

Export Citation Format

Share Document