A coupling proof of weak convergence

1985 ◽  
Vol 22 (2) ◽  
pp. 447-453
Author(s):  
Peter Guttorp ◽  
Reg Kulperger ◽  
Richard Lockhart

Weak convergence to reflected Brownian motion is deduced for certain upwardly drifting random walks by coupling them to a simple reflected random walk. The argument is quite elementary, and also gives the right conditions on the drift. A similar argument works for a corresponding continuous-time problem.

1985 ◽  
Vol 22 (02) ◽  
pp. 447-453
Author(s):  
Peter Guttorp ◽  
Reg Kulperger ◽  
Richard Lockhart

Weak convergence to reflected Brownian motion is deduced for certain upwardly drifting random walks by coupling them to a simple reflected random walk. The argument is quite elementary, and also gives the right conditions on the drift. A similar argument works for a corresponding continuous-time problem.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Michael Drmota

International audience In this paper we consider discrete random walks on infinite graphs that are generated by copying and shifting one finite (strongly connected) graph into one direction and connecting successive copies always in the same way. With help of generating functions it is shown that there are only three types for the asymptotic behaviour of the random walk. It either converges to the stationary distribution or it can be approximated in terms of a reflected Brownian motion or by a Brownian motion. In terms of Markov chains these cases correspond to positive recurrence, to null recurrence, and to non recurrence.


2013 ◽  
Vol 50 (1) ◽  
pp. 122-128
Author(s):  
Zsolt Pajor-Gyulai ◽  
Domokos Szász

Let {Xn}n∈ℕ be a sequence of i.i.d. random variables in ℤd. Let Sk = X1 + … + Xk and Yn(t) be the continuous process on [0, 1] for which Yn(k/n) = Sk/n1/2 for k = 1, … n and which is linearly interpolated elsewhere. The paper gives a generalization of results of ([2]) on the weak limit laws of Yn(t) conditioned to stay away from some small sets. In particular, it is shown that the diffusive limit of the random walk meander on ℤd: d ≧ 2 is the Brownian motion.


2019 ◽  
Vol 20 (03) ◽  
pp. 2050015 ◽  
Author(s):  
Hua Zhang

In this paper, we prove a moderate deviation principle for the multivalued stochastic differential equations whose proof are based on recently well-developed weak convergence approach. As an application, we obtain the moderate deviation principle for reflected Brownian motion.


2014 ◽  
Vol 46 (02) ◽  
pp. 400-421 ◽  
Author(s):  
Daniela Bertacchi ◽  
Fabio Zucca

In this paper we study the strong local survival property for discrete-time and continuous-time branching random walks. We study this property by means of an infinite-dimensional generating functionGand a maximum principle which, we prove, is satisfied by every fixed point ofG. We give results for the existence of a strong local survival regime and we prove that, unlike local and global survival, in continuous time, strong local survival is not a monotone property in the general case (though it is monotone if the branching random walk is quasitransitive). We provide an example of an irreducible branching random walk where the strong local property depends on the starting site of the process. By means of other counterexamples, we show that the existence of a pure global phase is not equivalent to nonamenability of the process, and that even an irreducible branching random walk with the same branching law at each site may exhibit nonstrong local survival. Finally, we show that the generating function of an irreducible branching random walk can have more than two fixed points; this disproves a previously known result.


2014 ◽  
Vol 46 (2) ◽  
pp. 400-421 ◽  
Author(s):  
Daniela Bertacchi ◽  
Fabio Zucca

In this paper we study the strong local survival property for discrete-time and continuous-time branching random walks. We study this property by means of an infinite-dimensional generating function G and a maximum principle which, we prove, is satisfied by every fixed point of G. We give results for the existence of a strong local survival regime and we prove that, unlike local and global survival, in continuous time, strong local survival is not a monotone property in the general case (though it is monotone if the branching random walk is quasitransitive). We provide an example of an irreducible branching random walk where the strong local property depends on the starting site of the process. By means of other counterexamples, we show that the existence of a pure global phase is not equivalent to nonamenability of the process, and that even an irreducible branching random walk with the same branching law at each site may exhibit nonstrong local survival. Finally, we show that the generating function of an irreducible branching random walk can have more than two fixed points; this disproves a previously known result.


2011 ◽  
Vol 43 (3) ◽  
pp. 782-813 ◽  
Author(s):  
M. Jara ◽  
T. Komorowski

In this paper we consider the scaled limit of a continuous-time random walk (CTRW) based on a Markov chain {Xn,n≥ 0} and two observables, τ(∙) andV(∙), corresponding to the renewal times and jump sizes. Assuming that these observables belong to the domains of attraction of some stable laws, we give sufficient conditions on the chain that guarantee the existence of the scaled limits for CTRWs. An application of the results to a process that arises in quantum transport theory is provided. The results obtained in this paper generalize earlier results contained in Becker-Kern, Meerschaert and Scheffler (2004) and Meerschaert and Scheffler (2008), and the recent results of Henry and Straka (2011) and Jurlewicz, Kern, Meerschaert and Scheffler (2010), where {Xn,n≥ 0} is a sequence of independent and identically distributed random variables.


1996 ◽  
Vol 28 (04) ◽  
pp. 1145-1176 ◽  
Author(s):  
Sid Browne ◽  
Ward Whitt

We derive optimal gambling and investment policies for cases in which the underlying stochastic process has parameter values that are unobserved random variables. For the objective of maximizing logarithmic utility when the underlying stochastic process is a simple random walk in a random environment, we show that a state-dependent control is optimal, which is a generalization of the celebrated Kelly strategy: the optimal strategy is to bet a fraction of current wealth equal to a linear function of the posterior mean increment. To approximate more general stochastic processes, we consider a continuous-time analog involving Brownian motion. To analyze the continuous-time problem, we study the diffusion limit of random walks in a random environment. We prove that they converge weakly to a Kiefer process, or tied-down Brownian sheet. We then find conditions under which the discrete-time process converges to a diffusion, and analyze the resulting process. We analyze in detail the case of the natural conjugate prior, where the success probability has a beta distribution, and show that the resulting limit diffusion can be viewed as a rescaled Brownian motion. These results allow explicit computation of the optimal control policies for the continuous-time gambling and investment problems without resorting to continuous-time stochastic-control procedures. Moreover they also allow an explicit quantitative evaluation of the financial value of randomness, the financial gain of perfect information and the financial cost of learning in the Bayesian problem.


2007 ◽  
Vol 44 (04) ◽  
pp. 1056-1067 ◽  
Author(s):  
Andreas Lindell ◽  
Lars Holst

Expressions for the joint distribution of the longest and second longest excursions as well as the marginal distributions of the three longest excursions in the Brownian bridge are obtained. The method, which primarily makes use of the weak convergence of the random walk to the Brownian motion, principally gives the possibility to obtain any desired joint or marginal distribution. Numerical illustrations of the results are also given.


Sign in / Sign up

Export Citation Format

Share Document