scholarly journals Discrete Random Walks on One-Sided ``Periodic'' Graphs

2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Michael Drmota

International audience In this paper we consider discrete random walks on infinite graphs that are generated by copying and shifting one finite (strongly connected) graph into one direction and connecting successive copies always in the same way. With help of generating functions it is shown that there are only three types for the asymptotic behaviour of the random walk. It either converges to the stationary distribution or it can be approximated in terms of a reflected Brownian motion or by a Brownian motion. In terms of Markov chains these cases correspond to positive recurrence, to null recurrence, and to non recurrence.

2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Michel Nguyên Thê

International audience This paper gives a survey of the limit distributions of the areas of different types of random walks, namely Dyck paths, bilateral Dyck paths, meanders, and Bernoulli random walks, using the technology of generating functions only.


1985 ◽  
Vol 22 (2) ◽  
pp. 447-453
Author(s):  
Peter Guttorp ◽  
Reg Kulperger ◽  
Richard Lockhart

Weak convergence to reflected Brownian motion is deduced for certain upwardly drifting random walks by coupling them to a simple reflected random walk. The argument is quite elementary, and also gives the right conditions on the drift. A similar argument works for a corresponding continuous-time problem.


1985 ◽  
Vol 22 (02) ◽  
pp. 447-453
Author(s):  
Peter Guttorp ◽  
Reg Kulperger ◽  
Richard Lockhart

Weak convergence to reflected Brownian motion is deduced for certain upwardly drifting random walks by coupling them to a simple reflected random walk. The argument is quite elementary, and also gives the right conditions on the drift. A similar argument works for a corresponding continuous-time problem.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Philippe Marchal

International audience We give an algorithm which constructs recursively a sequence of simple random walks on $\mathbb{Z}$ converging almost surely to a Brownian motion. One obtains by the same method conditional versions of the simple random walk converging to the excursion, the bridge, the meander or the normalized pseudobridge.


1980 ◽  
Vol 17 (01) ◽  
pp. 253-258 ◽  
Author(s):  
R. B. Nain ◽  
Kanwar Sen

For correlated random walks a method of transition probability matrices as an alternative to the much-used methods of probability generating functions and difference equations has been investigated in this paper. To illustrate the use of transition probability matrices for computing the various probabilities for correlated random walks, the transition probability matrices for restricted/unrestricted one-dimensional correlated random walk have been defined and used to obtain some of the probabilities.


2000 ◽  
Vol 32 (01) ◽  
pp. 177-192 ◽  
Author(s):  
K. S. Chong ◽  
Richard Cowan ◽  
Lars Holst

A simple asymmetric random walk on the integers is stopped when its range is of a given length. When and where is it stopped? Analogous questions can be stated for a Brownian motion. Such problems are studied using results for the classical ruin problem, yielding results for the cover time and the range, both for asymmetric random walks and Brownian motion with drift.


1991 ◽  
Vol 28 (4) ◽  
pp. 717-726 ◽  
Author(s):  
Claude Bélisle ◽  
Julian Faraway

Recent results on the winding angle of the ordinary two-dimensional random walk on the integer lattice are reviewed. The difference between the Brownian motion winding angle and the random walk winding angle is discussed. Other functionals of the random walk, such as the maximum winding angle, are also considered and new results on their asymptotic behavior, as the number of steps increases, are presented. Results of computer simulations are presented, indicating how well the asymptotic distributions fit the exact distributions for random walks with 10m steps, for m = 2, 3, 4, 5, 6, 7.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Megan Bernstein

International audience The involution walk is a random walk on the symmetric group generated by involutions with a number of 2-cycles sampled from the binomial distribution with parameter p. This is a parallelization of the lazy transposition walk onthesymmetricgroup.Theinvolutionwalkisshowninthispapertomixfor1 ≤p≤1fixed,nsufficientlylarge 2 in between log1/p(n) steps and log2/(1+p)(n) steps. The paper introduces a new technique for finding eigenvalues of random walks on the symmetric group generated by many conjugacy classes using the character polynomial for the characters of the representations of the symmetric group. This is especially efficient at calculating the large eigenvalues. The smaller eigenvalues are handled by developing monotonicity relations that also give after sufficient time the likelihood order, the order from most likely to least likely state. The walk was introduced to study a conjecture about a random walk on the unitary group from the information theory of back holes.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Endre Csáki ◽  
Yueyun Hu

International audience Consider a simple symmetric random walk on the line. The parts of the random walk between consecutive returns to the origin are called excursions. The heights and lengths of these excursions can be arranged in decreasing order. In this paper we give the exact and limiting distributions of these ranked quantities. These results are analogues of the corresponding results of Pitman and Yor [1997, 1998, 2001] for Brownian motion.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Alessandro Vezzani ◽  
Davide Cassi ◽  
Raffaella Burioni

International audience The study of thermodynamic properties of classical spin models on infinite graphs naturally leads to consider the new combinatorial problems of random-walks and percolation on the average. Indeed, spinmodels with O(n) continuous symmetry present spontaneous magnetization only on transient on the average graphs, while models with discrete symmetry (Ising and Potts) are spontaneously magnetized on graphs exhibiting percolation on the average. In this paper we define the combinatorial problems on the average, showing that they give rise to classifications of graph topology which are different from the ones obtained in usual (local) random-walks and percolation. Furthermore, we illustrate the theorem proving the correspondence between Potts model and average percolation.


Sign in / Sign up

Export Citation Format

Share Document