On identifiability in the autopsy model of reliability theory

1993 ◽  
Vol 30 (4) ◽  
pp. 913-930 ◽  
Author(s):  
Robin Antoine ◽  
Hani Doss ◽  
Myles Hollander

A coherent system is observed until it fails. At the instant of system failure, the set of failed components and the failure time of the system are noted. The failure times of the components are not known. We consider whether the component life distributions can be determined from the distributions of the observed data.Meilijson (1981) gave a condition on the structure of the system that was sufficient for the identifiability of the component distributions, under the assumption that the component life distributions are continuous and have common essential extrema. Nowik (1990) gave necessary and sufficient conditions for identifiability under the more restrictive condition that the component distributions have atoms at their common essential infimum and are mutually absolutely continuous. We give a necessary condition for identifiability, which we show to be equivalent to Nowik's condition, under the assumption that the distributions are continuous and strictly increasing. We derive a sufficient condition for identifiability, more general than Meilijson's, for the case in which the component distributions are assumed to be analytic. We also show that our necessary condition for identifiability is both necessary and sufficient when the component life distributions are assumed to belong to certain parametric families.

1993 ◽  
Vol 30 (04) ◽  
pp. 913-930 ◽  
Author(s):  
Robin Antoine ◽  
Hani Doss ◽  
Myles Hollander

A coherent system is observed until it fails. At the instant of system failure, the set of failed components and the failure time of the system are noted. The failure times of the components are not known. We consider whether the component life distributions can be determined from the distributions of the observed data. Meilijson (1981) gave a condition on the structure of the system that was sufficient for the identifiability of the component distributions, under the assumption that the component life distributions are continuous and have common essential extrema. Nowik (1990) gave necessary and sufficient conditions for identifiability under the more restrictive condition that the component distributions have atoms at their common essential infimum and are mutually absolutely continuous. We give a necessary condition for identifiability, which we show to be equivalent to Nowik's condition, under the assumption that the distributions are continuous and strictly increasing. We derive a sufficient condition for identifiability, more general than Meilijson's, for the case in which the component distributions are assumed to be analytic. We also show that our necessary condition for identifiability is both necessary and sufficient when the component life distributions are assumed to belong to certain parametric families.


2021 ◽  
Vol 6 (1(34)) ◽  
pp. 30-42
Author(s):  
Misraddin Allahverdi oglu Sadigov

The property subdifferential of an integral and terminal functional in a space of the type of absolutely continuous functions is studied. Necessary and sufficient conditions for an extremum for a variational problem containing the second derivatives of unknown functions are obtained. With the help of the subdifferential introduced by the author, a nonconvex generalized variational problem containing the second derivatives of unknown functions is considered, and the necessary condition for an extremum is obtained.


2020 ◽  
Vol 23 (3) ◽  
pp. 393-397
Author(s):  
Wolfgang Knapp ◽  
Peter Schmid

AbstractLet G be a finite transitive permutation group of degree n, with point stabilizer {H\neq 1} and permutation character π. For every positive integer t, we consider the generalized character {\psi_{t}=\rho_{G}-t(\pi-1_{G})}, where {\rho_{G}} is the regular character of G and {1_{G}} the 1-character. We give necessary and sufficient conditions on t (and G) which guarantee that {\psi_{t}} is a character of G. A necessary condition is that {t\leq\min\{n-1,\lvert H\rvert\}}, and it turns out that {\psi_{t}} is a character of G for {t=n-1} resp. {t=\lvert H\rvert} precisely when G is 2-transitive resp. a Frobenius group.


1977 ◽  
Vol 16 (3) ◽  
pp. 361-369
Author(s):  
M. Deza ◽  
Peter Eades

Necessary and sufficient conditions are given for a square matrix to te the matrix of distances of a circulant code. These conditions are used to obtain some inequalities for cyclic difference sets, and a necessary condition for the existence of circulant weighing matrices.


2007 ◽  
Vol 7 (7) ◽  
pp. 624-638
Author(s):  
J. de Vicente

We study the separability of bipartite quantum systems in arbitrary dimensions using the Bloch representation of their density matrix. This approach enables us to find an alternative characterization of the separability problem, from which we derive a necessary condition and sufficient conditions for separability. For a certain class of states the necessary condition and a sufficient condition turn out to be equivalent, therefore yielding a necessary and sufficient condition. The proofs of the sufficient conditions are constructive, thus providing decompositions in pure product states for the states that satisfy them. We provide examples that show the ability of these conditions to detect entanglement. In particular, the necessary condition is proved to be strong enough to detect bound entangled states.


1976 ◽  
Vol 13 (03) ◽  
pp. 519-529 ◽  
Author(s):  
Douglas R. Miller

Necessary and sufficient conditions are presented under which the point processes equivalent to order statistics of n i.i.d. random variables or superpositions of n i.i.d. renewal processes converge to a non-degenerate limiting process as n approaches infinity. The limiting process must be one of three types of non-homogeneous Poisson process, one of which is the Weibull process. These point processes occur as failure-time models in the reliability theory of repairable systems.


1985 ◽  
Vol 17 (2) ◽  
pp. 347-366 ◽  
Author(s):  
Ushio Sumita ◽  
J. George Shanthikumar

In this paper we define and analyze a class of cumulative shock models associated with a bivariate sequence {Xn, Yn}∞n=0 of correlated random variables. The {Xn} denote the sizes of the shocks and the {Yn} denote the times between successive shocks. The system fails when the cumulative magnitude of the shocks exceeds a prespecified level z. Two models, depending on whether the size of the nth shock is correlated with the length of the interval since the last shock or with the length of the succeeding interval until the next shock, are considered. Various transform results and asymptotic properties of the system failure time are obtained. Further, sufficient conditions are established under which system failure time is new better than used, new better than used in expectation, and harmonic new better than used in expectation.


1980 ◽  
Vol 87 (3) ◽  
pp. 383-392
Author(s):  
Alan MacLean

It has long been known, after Wiener (e.g. see (11), vol. 1, p. 108, (5), (8), §5·6)) that a measure μ whose Fourier transform vanishes at infinity is continuous, and generally, that μ is continuous if and only if is small ‘on the average’. Baker (1) has pursued this theme and obtained concise necessary and sufficient conditions for the continuity of μ, again expressed in terms of the rate of decrease of . On the other hand, for continuous μ, Rudin (9) points out the difficulty in obtaining criteria based solely on the asymptotic behaviour of by which one may determine whether μ has a singular component. The object of this paper is to show further that any such criteria must be complicated indeed. We shall show that the absolutely continuous measures on T = [0, 2π) whose Fourier transforms are the most well-behaved (namely, those of the form (1/2π)f(x)dx, where f has an absolutely convergent Fourier series) are such that one may modify their transforms on ‘large’ subsets of Z so that they become the transforms of singular continuous measures. Moreover, the singular continuous measures in question may be chosen so that their Fourier transforms do not vanish at infinity.


2008 ◽  
Vol 24 (3) ◽  
pp. 823-828 ◽  
Author(s):  
Henghsiu Tsai ◽  
Kung-Sik Chan

We consider the parameter restrictions that need to be imposed to ensure that the conditional variance process of a GARCH(p,q) model remains nonnegative. Previously, Nelson and Cao (1992, Journal of Business ’ Economic Statistics 10, 229–235) provided a set of necessary and sufficient conditions for the aforementioned nonnegativity property for GARCH(p,q) models with p ≤ 2 and derived a sufficient condition for the general case of GARCH(p,q) models with p ≥ 3. In this paper, we show that the sufficient condition of Nelson and Cao (1992) for p ≥ 3 actually is also a necessary condition. In addition, we point out the linkage between the absolute monotonicity of the generalized autoregressive conditional heteroskedastic (GARCH) generating function and the nonnegativity of the GARCH kernel, and we use it to provide examples of sufficient conditions for this nonnegativity property to hold.


1993 ◽  
Vol 30 (03) ◽  
pp. 602-615 ◽  
Author(s):  
R. A. Maller ◽  
S. Zhou

Suppose n possibly censored survival times are observed under an independent censoring model, in which the observed times are generated as the minimum of independent positive failure and censor random variables. A practical difficulty arises when the largest observation is censored since then the usual non-parametric estimator of the distribution of the survival time is improper. We calculate the probability that this occurs and give necessary and sufficient conditions for this probability to converge to 0 as n →∞. As an application, we show that if this probability is 0, asymptotically, then a consistent estimator for the mean failure time can be found. An almost sure version of the problem is also considered.


Sign in / Sign up

Export Citation Format

Share Document