An optimal inspection–repair–replacement policy for standby systems

1995 ◽  
Vol 32 (1) ◽  
pp. 212-223 ◽  
Author(s):  
Lam Yeh

In this paper, an optimal maintenance model for standby systems is studied. An inspection–repair–replacement policy is employed. Assume that the state of the system can only be determined through an inspection which may incorrectly identify the system state. After each inspection, if the system is identified as in the down state, a repair action will be taken. It will be replaced some time later by a new and identical one. The problem is to determine an optimal policy so that the availability of the system is high enough at any time and the long-run expected cost per unit time is minimized. An explicit expression for the long-run expected cost per unit time is derived. For a geometric model, a simple algorithm for the determination of an optimal solution is suggested.

1995 ◽  
Vol 32 (01) ◽  
pp. 212-223
Author(s):  
Lam Yeh

In this paper, an optimal maintenance model for standby systems is studied. An inspection–repair–replacement policy is employed. Assume that the state of the system can only be determined through an inspection which may incorrectly identify the system state. After each inspection, if the system is identified as in the down state, a repair action will be taken. It will be replaced some time later by a new and identical one. The problem is to determine an optimal policy so that the availability of the system is high enough at any time and the long-run expected cost per unit time is minimized. An explicit expression for the long-run expected cost per unit time is derived. For a geometric model, a simple algorithm for the determination of an optimal solution is suggested.


2020 ◽  
Vol 31 (3) ◽  
pp. 345-365 ◽  
Author(s):  
Maxim Finkelstein ◽  
Ji Hwan Cha ◽  
Gregory Levitin

Abstract A new model of hybrid preventive maintenance of systems with partially observable degradation is developed. This model combines condition-based maintenance with age replacement maintenance in the proposed, specific way. A system, subject to a shock process, is replaced on failure or at some time ${T}_S$ if the number of shocks experienced by this time is greater than or equal to m or at time $T>{T}_S$ otherwise, whichever occurs first. Each shock increases the failure rate of the system at the random time of its occurrence, thus forming a corresponding shot-noise process. The real deterioration of the system is partially observed via observation of the shock process at time ${T}_S$. The corresponding optimization problem is solved and a detailed numerical example demonstrates that the long-run cost rate for the proposed optimal hybrid strategy is smaller than that for the standard optimal age replacement policy.


2005 ◽  
Vol 42 (01) ◽  
pp. 1-14 ◽  
Author(s):  
Lam Yeh

In this paper, we study a monotone process maintenance model for a multistate system with k working states and ℓ failure states. By making different assumptions, we can apply the model to a multistate deteriorating system as well as to a multistate improving system. We show that the monotone process model for a multistate system is equivalent to a geometric process model for a two-state system. Then, for both the deteriorating and the improving system, we analytically determine an optimal replacement policy for minimizing the long-run average cost per unit time.


Author(s):  
Qinglai Dong ◽  
Lirong Cui ◽  
Hongda Gao

A repair replacement model for a deteriorating system with delayed repair is studied, in which the successive working times after repair and the consecutive repair times of the system are described by geometric processes. The instantaneous availability is studied in the case of general distributions for the working time, repair time and delayed repair time. A bivariate replacement policy is considered, that is, the system is replaced whenever the working age of the system reaches T or at the first hitting time of the working time after repair with respect to the working time threshold τ, whichever occurs first. The explicit expression of the long-run average cost rate under the replacement policies is derived. The corresponding optimal replacement policy can be determined numerically, and numerical examples are presented to demonstrate the application of the developed model and approach. It is shown that the optimal solution and optimal value are sensitive to the tiny change in the ratios of the Geometric processes and the expectation of the delayed repair time.


2005 ◽  
Vol 42 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Lam Yeh

In this paper, we study a monotone process maintenance model for a multistate system with k working states and ℓ failure states. By making different assumptions, we can apply the model to a multistate deteriorating system as well as to a multistate improving system. We show that the monotone process model for a multistate system is equivalent to a geometric process model for a two-state system. Then, for both the deteriorating and the improving system, we analytically determine an optimal replacement policy for minimizing the long-run average cost per unit time.


Author(s):  
Qingan Qiu ◽  
Baoliang Liu ◽  
Cong Lin ◽  
Jingjing Wang

This paper studies the availability and optimal maintenance policies for systems subject to competing failure modes under continuous and periodic inspections. The repair time distribution and maintenance cost are both dependent on the failure modes. We investigate the instantaneous availability and the steady state availability of the system maintained through several imperfect repairs before a replacement is allowed. Analytical expressions for system availability under continuous and periodic inspections are derived respectively. The availability models are then utilized to obtain the optimal inspection and imperfect maintenance policy that minimizes the average long-run cost rate. A numerical example for Remote Power Feeding System is presented to demonstrate the application of the developed approach.


1994 ◽  
Vol 31 (4) ◽  
pp. 1123-1127 ◽  
Author(s):  
Yuan Lin Zhang

In this paper, a repairable system consisting of one unit and a single repairman is studied. Assume that the system after repair is not as good as new. Under this assumption, a bivariate replacement policy (T, N), where T is the working age and N is the number of failures of the system is studied. The problem is to determine the optimal replacement policy (T, N)∗such that the long-run average cost per unit time is minimized. The explicit expression of the long-run average cost per unit time is derived, and the corresponding optimal replacement policy can be determined analytically or numerically. Finally, under some conditions, we show that the policy (T, N)∗ is better than policies N∗ or T∗.


2001 ◽  
Vol 33 (1) ◽  
pp. 206-222 ◽  
Author(s):  
Xiaoyue Jiang ◽  
Viliam Makis ◽  
Andrew K. S. Jardine

In this paper, we study a maintenance model with general repair and two types of replacement: failure and preventive replacement. When the system fails a decision is made whether to replace or repair it. The repair degree that affects the virtual age of the system is assumed to be a random function of the repair-cost and the virtual age at failure time. The system can be preventively replaced at any time before failure. The objective is to find the repair/replacement policy minimizing the long-run expected average cost per unit time. It is shown that a generalized repair-cost-limit policy is optimal and the preventive replacement time depends on the virtual age of the system and on the length of the operating time since the last repair. Computational procedures for finding the optimal repair-cost limit and the optimal average cost are developed. This model includes many well-known models as special cases and the approach provides a unified treatment of a wide class of maintenance models.


Manufacturing ◽  
2003 ◽  
Author(s):  
L. Shelley Xie ◽  
Agus Sudjianto

A new FEA based design approach of optimal robust fixture configuration is proposed in this paper, which employs a surrogate model through computer experiment to significantly reduce the intensive computing effort involving numerous FEA system response evaluations. The effects of the fixture variability to the workpiece performance variability are assessed through an efficient robustness evaluation method, First Order Reliability Method (FORM), based on the surrogate computer model. Not restricted to primary datum surface, this new approach enables simultaneous determination of robust locator/clamp locations and clamping forces for a deformable workpiece and thus captures interaction between locating and clamping. The effectiveness of this approach is illustrated though an application example. The results of robustness analysis reveal new information and suggest that the optimal solution resulted from deterministic optimization may not be the best solution when the design is subjected to variability.


Sign in / Sign up

Export Citation Format

Share Document