Rough limit results for level-crossing probabilities

1994 ◽  
Vol 31 (2) ◽  
pp. 373-382 ◽  
Author(s):  
Harri Nyrhinen

Let Y1, Y2, · ·· be a stochastic process and M a positive real number. Define TM = inf{n | Yn > M} (TM = + ∞ if for n = 1, 2, ···)· We are interested in the probabilities P(TM <∞) and in particular in the case when these tend to zero exponentially fast when M tends to infinity. The techniques of large deviations theory are used to obtain conditions for this and to find out the rate of convergence. The main hypotheses required are given in terms of the generating functions associated with the process (Yn).

1994 ◽  
Vol 31 (02) ◽  
pp. 373-382 ◽  
Author(s):  
Harri Nyrhinen

Let Y 1, Y 2, · ·· be a stochastic process and M a positive real number. Define TM = inf{n | Yn &gt; M} (TM = + ∞ if for n = 1, 2, ···)· We are interested in the probabilities P(TM &lt;∞) and in particular in the case when these tend to zero exponentially fast when M tends to infinity. The techniques of large deviations theory are used to obtain conditions for this and to find out the rate of convergence. The main hypotheses required are given in terms of the generating functions associated with the process (Yn ).


1998 ◽  
Vol 30 (04) ◽  
pp. 1008-1026 ◽  
Author(s):  
Harri Nyrhinen

Let {Y n | n = 1, 2,…} be a stochastic process and M a positive real number. Define the time of ruin by T = inf{n | Y n &gt; M} (T = +∞ if Y n ≤ M for n = 1, 2,…). Using the techniques of large deviations theory we obtain rough exponential estimates for ruin probabilities for a general class of processes. Special attention is given to the probability that ruin occurs up to a certain time point. We also generalize the concept of the safety loading and consider its importance to ruin probabilities.


1998 ◽  
Vol 30 (4) ◽  
pp. 1008-1026 ◽  
Author(s):  
Harri Nyrhinen

Let {Yn | n = 1, 2,…} be a stochastic process and M a positive real number. Define the time of ruin by T = inf{n | Yn > M} (T = +∞ if Yn ≤ M for n = 1, 2,…). Using the techniques of large deviations theory we obtain rough exponential estimates for ruin probabilities for a general class of processes. Special attention is given to the probability that ruin occurs up to a certain time point. We also generalize the concept of the safety loading and consider its importance to ruin probabilities.


1992 ◽  
Vol 24 (04) ◽  
pp. 858-874 ◽  
Author(s):  
T. Lehtonen ◽  
H. Nyrhinen

Let X 1, X 2, · ·· be independent and identically distributed random variables such that ΕΧ 1 &lt; 0 and P (X 1 ≥ 0) ≥ 0. Fix M ≥ 0 and let T = inf {n: X 1 + X 2 + · ·· + Xn ≥ M} (T = +∞, if for every n = 1,2, ···). In this paper we consider the estimation of the level-crossing probabilities P (T &lt;∞) and , by using Monte Carlo simulation and especially importance sampling techniques. When using importance sampling, precision and efficiency of the estimation depend crucially on the choice of the simulation distribution. For this choice we introduce a new criterion which is of the type of large deviations theory; consequently, the basic large deviations theory is the main mathematical tool of this paper. We allow a wide class of possible simulation distributions and, considering the case that M →∞, we prove asymptotic optimality results for the simulation of the probabilities P (T &lt;∞) and . The paper ends with an example.


1992 ◽  
Vol 24 (4) ◽  
pp. 858-874 ◽  
Author(s):  
T. Lehtonen ◽  
H. Nyrhinen

Let X1, X2, · ·· be independent and identically distributed random variables such that ΕΧ1 < 0 and P(X1 ≥ 0) ≥ 0. Fix M ≥ 0 and let T = inf {n: X1 + X2 + · ·· + Xn ≥ M} (T = +∞, if for every n = 1,2, ···). In this paper we consider the estimation of the level-crossing probabilities P(T <∞) and , by using Monte Carlo simulation and especially importance sampling techniques. When using importance sampling, precision and efficiency of the estimation depend crucially on the choice of the simulation distribution. For this choice we introduce a new criterion which is of the type of large deviations theory; consequently, the basic large deviations theory is the main mathematical tool of this paper. We allow a wide class of possible simulation distributions and, considering the case that M →∞, we prove asymptotic optimality results for the simulation of the probabilities P(T <∞) and . The paper ends with an example.


2018 ◽  
Vol 7 (1) ◽  
pp. 77-83
Author(s):  
Rajendra Prasad Regmi

There are various methods of finding the square roots of positive real number. This paper deals with finding the principle square root of positive real numbers by using Lagrange’s and Newton’s interpolation method. The interpolation method is the process of finding the values of unknown quantity (y) between two known quantities.


2014 ◽  
Vol 16 (04) ◽  
pp. 1350046 ◽  
Author(s):  
B. Barrios ◽  
M. Medina ◽  
I. Peral

The aim of this paper is to study the solvability of the following problem, [Formula: see text] where (-Δ)s, with s ∈ (0, 1), is a fractional power of the positive operator -Δ, Ω ⊂ ℝN, N > 2s, is a Lipschitz bounded domain such that 0 ∈ Ω, μ is a positive real number, λ < ΛN,s, the sharp constant of the Hardy–Sobolev inequality, 0 < q < 1 and [Formula: see text], with αλ a parameter depending on λ and satisfying [Formula: see text]. We will discuss the existence and multiplicity of solutions depending on the value of p, proving in particular that p(λ, s) is the threshold for the existence of solution to problem (Pμ).


2020 ◽  
Vol 26 (2) ◽  
pp. 231-240
Author(s):  
Gholamreza H. Mehrabani ◽  
Kourosh Nourouzi

AbstractDiversities are a generalization of metric spaces which associate a positive real number to every finite subset of the space. In this paper, we introduce ultradiversities which are themselves simultaneously diversities and a sort of generalization of ultrametric spaces. We also give the notion of spherical completeness for ultradiversities based on the balls defined in such spaces. In particular, with the help of nonexpansive mappings defined between ultradiversities, we show that an ultradiversity is spherically complete if and only if it is injective.


1989 ◽  
Vol 26 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Lajos Takács

This paper demonstrates how a simple ballot theorem leads, through the interjection of a queuing process, to the solution of a problem in the theory of random graphs connected with a study of polymers in chemistry. Let Γn(p) denote a random graph with n vertices in which any two vertices, independently of the others, are connected by an edge with probability p where 0 < p < 1. Denote by ρ n(s) the number of vertices in the union of all those components of Γn(p) which contain at least one vertex of a given set of s vertices. This paper is concerned with the determination of the distribution of ρ n(s) and the limit distribution of ρ n(s) as n → ∞and ρ → 0 in such a way that np → a where a is a positive real number.


Author(s):  
MARTIN BUNDER ◽  
PETER NICKOLAS ◽  
JOSEPH TONIEN

For a positive real number $t$ , define the harmonic continued fraction $$\begin{eqnarray}\text{HCF}(t)=\biggl[\frac{t}{1},\frac{t}{2},\frac{t}{3},\ldots \biggr].\end{eqnarray}$$ We prove that $$\begin{eqnarray}\text{HCF}(t)=\frac{1}{1-2t(\frac{1}{t+2}-\frac{1}{t+4}+\frac{1}{t+6}-\cdots \,)}.\end{eqnarray}$$


Sign in / Sign up

Export Citation Format

Share Document