scholarly journals Long-Term Grazing Effects on Fescue Grassland Soils

1971 ◽  
Vol 24 (3) ◽  
pp. 185 ◽  
Author(s):  
A. Johnston ◽  
J. F. Dormaar ◽  
S. Smoliak
2014 ◽  
Vol 94 (3) ◽  
pp. 337-345 ◽  
Author(s):  
Maja Krzic ◽  
Sarah F. Lamagna ◽  
Reg F. Newman ◽  
Gary Bradfield ◽  
Brian M. Wallace

Krzic, M., Lamagna, S. F., Newman, R. F., Bradfield, G. and Wallace, B. M. 2014. Long-term grazing effects on rough fescue grassland soils in southern British Columbia. Can. J. Soil Sci. 94: 337–345. Rough fescue (Festuca campestris Rydb.) is a highly palatable forage species with little resistance to continuous grazing. The objective of this study was to evaluate the effects of long-term cattle grazing on soil properties, above-ground biomass, and canopy cover of key grass species on rough fescue grasslands in the southern interior British Columbia. Soil and vegetation properties were determined on a total of six open grassland sites located at the Lac du Bois and Hamilton Mountain. At all sites, grazing use has decreased over time, with the heaviest grazing occurring prior to 1960. The long-term (25–75 yr) elimination of grazing on these semi-arid grasslands has led to greater above-ground biomass and canopy cover of rough fescue, as well as increased soil polysaccharides; however, no differences in total soil C, N, and aggregate stability were found between pastures with and without grazing. Both soil bulk density and mechanical resistance were greater on grazed plots compared with those without grazing, with differences being more pronounced at the Hamilton Mountain location. The current grazing regime has not allowed for the elimination of negative effects of overgrazing on soil compaction on these rough fescue grasslands, especially at the location that continued to be grazed more heavily (i.e., Hamilton Mountain). Our findings suggest that soils in these grazing-sensitive grasslands need more than 75 yr to fully recover from the impacts of overgrazing.


Author(s):  
Daniel G. Milchunas ◽  
William K. Lauenroth

Although livestock are the most obvious consumers on the shortgrass steppe, they are certainly not the only consumers. However, livestock may influence the other consumers in a number of different ways. They may directly compete for food resources with other aboveground herbivores. There is behavioral interference between livestock and some species of wildlife (Roberts and Becker, 1982), but not others (Austin and Urness, 1986). The removal of biomass by livestock alters canopy structure (physiognomy) and influences microclimate. Bird, small-mammal, and insect species can be variously sensitive to these structural alterations (Brown, 1973; Cody, 1985; MacArthur, 1965; Morris, 1973; Rosenzweig et al., 1975; Wiens, 1969). There are both short- and long-term effects of grazing on plant community species composition, primary production, and plant tissue quality. Belowground consumers can also be affected by the effects of grazing on soil water infiltration, nutrient cycling, carbon allocation patterns of plants, litter accumulation, and soil temperature. The overall effects of livestock on a particular component of the native fauna can be negative or can be positive through facilitative relationships (Gordon, 1988). In this chapter we assess the effects of cattle grazing on other above- and belowground consumers, on the diversity and relative sensitivity of these groups of organisms, and on their trophic structure. We first present some brief background information on plant communities of the shortgrass steppe and on the long-term grazing treatments in which many of the studies reported herein were conducted. Details on the plant communities are presented by Lauenroth in chapter 5 (this volume), grazing effects on plant communities by Milchunas et al. in chapter 16 (this volume); and grazing effects on nutrient distributions and cycling by Burke et al. in chapter 13 (this volume). The physiognomy of the shortgrass steppe is indicated in its name. The dominant grasses (Bouteloua gracilis and Buchloë dactyloides), forb (Sphaeralcea coccinea), and carex (Carex eleocharis) have the majority of their leaf biomass within 10 cm of the ground surface. A number of less abundant midheight grasses and dwarf shrubs are sparsely interspersed among the short vegetation, but usually much of their biomass is within 25 cm of the g round. Basal cover of vegetation typically totals 25% to 35%, and is greater in long-term grazed than in ungrazed grassland. Bare ground (more frequent on grazed sites) and litter-covered ground (more frequent on ungrazed sites) comprise the remainder of the soil surface (Milchunas et al., 1989).


2012 ◽  
Vol 92 (4) ◽  
pp. 685-693 ◽  
Author(s):  
C. R. W. Evans ◽  
M. Krzic ◽  
K. Broersma ◽  
D. J. Thompson

Evans, C. R. W., Krzic, M., Broersma, K. and Thompson, D. J. 2012. Long-term grazing effects on grassland soil properties in southern British Columbia. Can. J. Soil Sci. 92: 685–693. Although grazing effects on soil properties have been evaluated on various temperate grasslands, no study has dealt with these effects in the southern interior of British Columbia. The objective of this study was to determine the effects of spring versus fall season grazing as well as grazing [at a moderate rate of 0.6 animal unit months (AUM) ha−1] versus non-grazing by beef cattle on selected soil properties. Effects were determined 20 and 30 yr after the establishment of the field experiment. Soil properties were determined for the 0- to 7.5-cm, 7.5- to 15-cm, and 15- to 30-cm depths. In comparison with fall grazing, spring grazing had greater soil bulk density, greater mechanical resistance within the top 15 cm of the soil profile, higher pH, and lower polysaccharides. This was true for both 20 and 30 yr of treatment. Grazing effects on aggregate stability were observed only after 30 yr with spring grazing leading to a more stable structure with a mean weight diameter (MWD) of 1.5 mm and 32% and 10% of aggregates in the 2- to 6-mm and 1- to 2-mm size fractions, respectively, compared with a MWD of 1.0 mm and 20% and 6% under fall grazing. Greater soil bulk density, mechanical resistance, and pH were observed under the grazed treatment relative to the control without grazing, but as we used a moderate stocking rate the impacts were not as great as in previous studies, which used heavy stocking rates. Our findings show that long-term grazing at a moderate stocking rate of 0.6 AUM ha−1did not have critical detrimental effects on soil properties as some land managers and ranchers have suggested.


2019 ◽  
Vol 105 ◽  
pp. 316-328 ◽  
Author(s):  
Weiwei Chen ◽  
Xunhua Zheng ◽  
Benjamin Wolf ◽  
Zhisheng Yao ◽  
Chunyan Liu ◽  
...  

2005 ◽  
Vol 58 (6) ◽  
pp. 637-642 ◽  
Author(s):  
Yong-Bi Fu ◽  
Don Thompson ◽  
Walter Willms ◽  
Mairi Mackay

1966 ◽  
Vol 19 (6) ◽  
pp. 362 ◽  
Author(s):  
Harshwardan R. Sant

1972 ◽  
Vol 25 (4) ◽  
pp. 246 ◽  
Author(s):  
S. Smoliak ◽  
J. F. Dormaar ◽  
A. Johnston

1990 ◽  
Vol 35 (1) ◽  
pp. 9 ◽  
Author(s):  
Apollo B. Orodho ◽  
M. J. Trlica ◽  
C. D. Bonham

Geoderma ◽  
2009 ◽  
Vol 153 (1-2) ◽  
pp. 172-185 ◽  
Author(s):  
Andrew S. Gregory ◽  
Chris W. Watts ◽  
Bryan S. Griffiths ◽  
Paul D. Hallett ◽  
Hsueh L. Kuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document