Long-term grazing effects on grassland soil properties in southern British Columbia

2012 ◽  
Vol 92 (4) ◽  
pp. 685-693 ◽  
Author(s):  
C. R. W. Evans ◽  
M. Krzic ◽  
K. Broersma ◽  
D. J. Thompson

Evans, C. R. W., Krzic, M., Broersma, K. and Thompson, D. J. 2012. Long-term grazing effects on grassland soil properties in southern British Columbia. Can. J. Soil Sci. 92: 685–693. Although grazing effects on soil properties have been evaluated on various temperate grasslands, no study has dealt with these effects in the southern interior of British Columbia. The objective of this study was to determine the effects of spring versus fall season grazing as well as grazing [at a moderate rate of 0.6 animal unit months (AUM) ha−1] versus non-grazing by beef cattle on selected soil properties. Effects were determined 20 and 30 yr after the establishment of the field experiment. Soil properties were determined for the 0- to 7.5-cm, 7.5- to 15-cm, and 15- to 30-cm depths. In comparison with fall grazing, spring grazing had greater soil bulk density, greater mechanical resistance within the top 15 cm of the soil profile, higher pH, and lower polysaccharides. This was true for both 20 and 30 yr of treatment. Grazing effects on aggregate stability were observed only after 30 yr with spring grazing leading to a more stable structure with a mean weight diameter (MWD) of 1.5 mm and 32% and 10% of aggregates in the 2- to 6-mm and 1- to 2-mm size fractions, respectively, compared with a MWD of 1.0 mm and 20% and 6% under fall grazing. Greater soil bulk density, mechanical resistance, and pH were observed under the grazed treatment relative to the control without grazing, but as we used a moderate stocking rate the impacts were not as great as in previous studies, which used heavy stocking rates. Our findings show that long-term grazing at a moderate stocking rate of 0.6 AUM ha−1did not have critical detrimental effects on soil properties as some land managers and ranchers have suggested.

2014 ◽  
Vol 94 (3) ◽  
pp. 337-345 ◽  
Author(s):  
Maja Krzic ◽  
Sarah F. Lamagna ◽  
Reg F. Newman ◽  
Gary Bradfield ◽  
Brian M. Wallace

Krzic, M., Lamagna, S. F., Newman, R. F., Bradfield, G. and Wallace, B. M. 2014. Long-term grazing effects on rough fescue grassland soils in southern British Columbia. Can. J. Soil Sci. 94: 337–345. Rough fescue (Festuca campestris Rydb.) is a highly palatable forage species with little resistance to continuous grazing. The objective of this study was to evaluate the effects of long-term cattle grazing on soil properties, above-ground biomass, and canopy cover of key grass species on rough fescue grasslands in the southern interior British Columbia. Soil and vegetation properties were determined on a total of six open grassland sites located at the Lac du Bois and Hamilton Mountain. At all sites, grazing use has decreased over time, with the heaviest grazing occurring prior to 1960. The long-term (25–75 yr) elimination of grazing on these semi-arid grasslands has led to greater above-ground biomass and canopy cover of rough fescue, as well as increased soil polysaccharides; however, no differences in total soil C, N, and aggregate stability were found between pastures with and without grazing. Both soil bulk density and mechanical resistance were greater on grazed plots compared with those without grazing, with differences being more pronounced at the Hamilton Mountain location. The current grazing regime has not allowed for the elimination of negative effects of overgrazing on soil compaction on these rough fescue grasslands, especially at the location that continued to be grazed more heavily (i.e., Hamilton Mountain). Our findings suggest that soils in these grazing-sensitive grasslands need more than 75 yr to fully recover from the impacts of overgrazing.


1983 ◽  
Vol 101 (1) ◽  
pp. 1-7 ◽  
Author(s):  
A. Pott ◽  
L. R. Humphreys

SUMMARYSheep were grazed for 2 years at stocking rates of 7, 14, 21 and 28/ha on a pasture comprising Lotononis bainesii and Digitaria decumbens cv. Pangola at Mt Cotton, south–east Queensland. There were six replicates of each treatment grazed in rotation with 3 days' grazing followed by 15 days' rest.The initial dominance of lotononis was lost after 6 months of grazing and lotononis failed to persist satisfactorily at any stocking rate. Demographic studies showed that lotononis behaved as a short-lived plant, predominantly annual, with some vegetative perennation as stolon-rooted units under heavy grazing. Soil seed reserves varied from 5800 to 400 m2 at the lightest and heaviest stocking rates respectively. Lotononis failed to regenerate under Pangola shading or inopportune high grazing pressure. Soil bulk density (0–7 cm) increased from 1·2 to 1·4 g/cm3 according to stocking rate.


2012 ◽  
Vol 88 (03) ◽  
pp. 306-316 ◽  
Author(s):  
Richard Kabzems

Declines in forest productivity have been linked to losses of organic matter and soil porosity. To assess how removal of organic matter and soil compaction affect short-term ecosystem dynamics, pre-treatment and year 1, 5 and 10 post-treatment soil properties and post-treatment plant community responses were examined in a boreal trembling aspen (Populus tremuloidesMichx.)-dominated ecosystem in northeastern British Columbia. The experiment used a completely randomized design with three levels of organic matter removal (tree stems only; stems and slash; stems, slash and forest floor) and three levels of soil compaction (none, intermediate [2-cm impression], heavy [5-cm impression]). Removal of the forest floor initially stimulated aspen regeneration and significantly reduced height growth of aspen (198 cm compared to 472–480 cm) as well as white spruce (Picea glauca [Moench] Voss) height (82 cm compared to 154–156 cm). The compaction treatments had no effect on aspen regeneration density. At Year 10, heights of both aspen and white spruce were negatively correlated with upper mineral soil bulk density and were lowest on forest floor + whole tree removal treatments. Recovery of soil properties was occurring in the 0 cm to 2 cm layer of mineral soil. Bulk density values for the 0 cm to 10 cm depth remained above 86% of the maximum bulk density for the site, a soil condition where reduced tree growth can be expected.


Soil Research ◽  
2016 ◽  
Vol 54 (7) ◽  
pp. 847
Author(s):  
N. R. Hulugalle ◽  
T. B. Weaver ◽  
L. A. Finlay ◽  
V. Heimoana

Treated sewage effluent may contain large amounts of nitrogen and phosphorus, and moderate to high amounts of salts. With good management, it can be used as a source of irrigation water and nutrients for a range of crops and soils under different climatic conditions and irrigation systems. However, there are few long-term studies of irrigation with treated sewage effluent in swelling soils such as Vertosols. This study was established in 2000 on a cotton farm near Narrabri, north-western New South Wales, to assess long-term (14-year) changes in soil salinity, sodicity and carbon storage in a self-mulching, medium-fine, grey Vertosol under conservation farming and furrow-irrigated with tertiary-treated sewage effluent and stored rainfall runoff. Experimental treatments in 2000–02 were gypsum applied at a rate of 2.5t/ha in June 2000 and an untreated control. In 2003–13, the gypsum-treated plots received a single pass with a combined AerWay cultivator and sweeps to ~0.15m depth before sowing cotton; in the control plots, wheat stubble was undisturbed. By retaining significant amounts of crop residues on the soil surface, both practices are recognised as conservation farming methods. Parameters for water sampled from the head-ditch during each irrigation included electrical conductivity (ECw), pHw, concentrations of cations potassium (K+), calcium (Ca2+), magnesium (Mg2+) and sodium (Na+), and sodium adsorption ratio (SAR). Parameters for soil sampled to 0.6m depth before sowing cotton were pH (0.01M CaCl2), salinity (EC of 1:5 soil:water suspension), bulk density, soil organic carbon (SOC), exchangeable Ca, Mg, K and Na, exchangeable sodium percentage (ESP) and electrochemical stability index (ESI). SOC storage (‘stocks’) in any one depth was estimated as the product of bulk density, sampling depth interval and SOC concentration. Management system had little or no effect on cotton lint yields and the soil properties measured. Major changes in soil properties were driven by a combination of irrigation water quality and seasonal variations in weather. The cultivated treatment did not degrade soil quality compared with the control and may be an option to control herbicide-resistant weeds or volunteer Roundup-Ready cotton. Irrigation water was alkaline (average pHw 8.9), moderately saline (average ECw 1.0dS/m) and potentially highly dispersive (average SAR 12.1). Long-term irrigation with tertiary-treated sewage effluent resulted in sodification (ESP > 6) at all depths, alkalinisation at 0–0.10 and 0.30–0.60m, and accumulation in the surface 0.10m of Ca and K. Average ESP at 0–0.6m depth increased from 3.8 during 2000 to 13.2 during 2013. Sodification occurred within a few years of applying the effluent. Exchangeable Ca at 0–0.10m depth increased from 19cmolc/kg during 2000 to 22cmolc/kg during 2013, and exchangeable K from 1.5cmolc/kg during 2000 to 2.1cmolc/kg during 2013. Drought conditions caused an increase in salt accumulation, alleviated by a subsequent period of heavy rainfall and flooding. The reduction in salinity was accompanied by a fall in exchangeable Mg concentrations. Salinity and exchangeable Mg concentration were strongly influenced by interactions between seasonal rainfall (i.e. floods and drought) and the quality of the effluent, whereas ESP and exchangeable K concentration were not affected by variations in seasonal rainfall. SOC stocks declined until the flooding events but increased thereafter.


2020 ◽  
Vol 8 (4) ◽  
pp. 995-1020
Author(s):  
Joel Mohren ◽  
Steven A. Binnie ◽  
Gregor M. Rink ◽  
Katharina Knödgen ◽  
Carlos Miranda ◽  
...  

Abstract. The quantification of soil bulk density (ρB) is a cumbersome and time-consuming task when traditional soil density sampling techniques are applied. However, it can be important for terrestrial cosmogenic nuclide (TCN) production rate scaling when deriving ages or surface process rates from buried samples, in particular when short-lived TCNs such as in situ 14C are applied. Here, we show that soil density determinations can be made using structure-from-motion multi-view stereo (SfM-MVS) photogrammetry-based volume reconstructions of sampling pits. Accuracy and precision tests as found in the literature and as conducted in this study clearly indicate that photographs taken from both a consumer-grade digital single-lens mirrorless (DSLM) and a smartphone camera are of sufficient quality to produce accurate and precise modelling results, i.e. to regularly reproduce the “true” volume and/or density by >95 %. This finding holds also if a freeware-based computing workflow is applied. The technique has been used to measure ρB along three small-scale (<1 km) N–S transects located in the semi-arid to arid Altos de Talinay, northern central Chile (∼30.5∘ S, ∼71.7∘ W), during a TCN sampling campaign. Here, long-term differences in microclimatic conditions between south-facing and north-facing slopes (SFSs and NFSs, respectively) explain a sharp contrast in vegetation cover, slope gradient and general soil condition patterns. These contrasts are also reflected by the soil density data, generally coinciding with lower densities on SFSs. The largest differences between NFSs and SFSs are evident in the lower portion of the respective slopes, close to the thalwegs. In general, field-state soil bulk densities were found to vary by about 0.6 g cm−3 over a few tens of metres along the same slope. As such, the dataset that was mainly generated to derive more accurate TCN-based process rates and ages can be used to characterise the present-day condition of soils in the study area, which in turn can give insight into the long-term soil formation and prevailing environmental conditions. This implies that the method tested in this study may also being applied in other fields of research and work, such as soil science, agriculture or the construction sector.


2012 ◽  
Vol 92 (1) ◽  
pp. 165-177 ◽  
Author(s):  
Trevor McConkey ◽  
Chuck Bulmer ◽  
Paul Sanborn

McConkey, T., Bulmer, C. and Sanborn, P. 2012. Effectiveness of five soil reclamation and reforestation techniques on oil and gas well sites in northeastern British Columbia. Can. J. Soil Sci. 92: 165–177. Techniques developed for forestry landing reclamation were applied to five oil and gas well sites in northeastern British Columbia to ameliorate soil and facilitate reforestation. Treatments implemented in fall 2003 and spring 2004 were tillage, wood chip mulch, tillage+wood chip mulch, tillage+incorporated wood chips, brush mats and a control. Lodgepole pine (Pinus contorta var. latifolia) and white spruce (Picea glauca) seedlings were planted. Soil and vegetation were assessed (bulk density, soil mechanical resistance, water content, air filled porosity, water retention, least limiting water range, nutrient availability, seedling survival and growth) throughout 2004 and 2005 growing seasons. Tillage improved soil physical condition, reducing soil mechanical resistance and bulk density; treatments did not affect soil chemical properties. Treatments did not significantly affect species survival; after 6 yr, spruce height and root collar diameter improved with tillage but treatments did not affect pine. Brush mats led to increased spruce growth. Regression relationships between tree performance and soil condition were significant, but generally did not explain large variability. More elaborate soil physical condition measures were no better than bulk density for predicting seedling performance, but relative bulk density and least limiting water range may be useful for evaluating soil productivity.


2003 ◽  
Vol 83 (4) ◽  
pp. 465-474 ◽  
Author(s):  
C. E. Bulmer ◽  
M. Krzic

We determined post-establishment tree growth and soil properties on rehabilitated log landings and forest plantation sites with medium texture in northeastern British Columbia. Six years after rehabilitation treatments were applied, 60% of rehabilitated landing plots had more than 1000 stems ha-1, while 17% had fewer than 600 stems ha-1. The average height of undamaged lodgepole pine trees on rehabilitated landings was consistently lower than for trees of the same age on plantations. Surface (0–7 cm) and subsurface (10–17 cm) soil bulk densities were higher for rehabilitated landings than for adjacent plantations. Rehabilitated landing and plantation soils had similar values of total and aeration porosity. Plantation soils had higher available water storage capacity (AWSC) than rehabilitated soils. Soil mechanical resistance after landing rehabilitation was often higher than for plantation soils at the same depth. Soils on both rehabilitated landings and plantations showed an increase in mechanical resistance from June to September 2001. With the exception of June 2001, soil mechanical resistance after landing rehabilitation was often higher than 2500 kPa. For surface mineral soils, there were no differences in total C, N, or cation exchange capacity (CEC) between rehabilitated landings and plantations. Rehabilitated landing soils had significantly higher total C and N at 10–17 cm depth than plantation soils, which coincided with higher clay content for the landing subsoils. Key words: Forest soil rehabilitation, soil degradation, soil productivity, soil conservation


2021 ◽  
Vol 14 (2) ◽  
pp. e7997
Author(s):  
José Luiz Rodrigues Torres ◽  
Ana Carolina Marques Mendonça Silva ◽  
Haroldo Silva Vallone ◽  
Dinamar Márcia da Silva Vieira ◽  
Zigomar Menezes de Souza ◽  
...  

Filter cakes are solid organic byproducts of the sugarcane industry that are generally used as fertilizers for crops such as coffee. Filter cake application has improved soil chemical, physical and microbiological attributes, especially for weathered soils. This study aimed to evaluate the influence of filter cake applications on the soil attributes cultivated with coffee in a Cerrado region. The study was conducted in a commercial coffee crop area (coffee cultivar Topázio MG 1190) in a Dystrophic Oxisol. The experimental design used was randomized blocks, in a factorial scheme of 4 x 4, with four doses of filter cake applied in the planting furrow (0, 4, 8, 12 L m-1) and four soil depths (0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4 m). Soil density, soil mechanical resistance to root penetration, moisture, porosity (micro, macro, and total) and aggregate stability were evaluated. In general, the application of sugarcane filter cake over a long period has little effect on the soil's physical attributes, regardless of the filter cake rate used in the coffee crop. Only the soil porosity is affected by 12 L m-1 of filter cake, increasing the micro and macroporosity of the soil and promoting adequate conditions for the growth of coffee root, which can generate large soil water retention, benefiting coffee crops in the long-term.


2020 ◽  
Vol 3 (2) ◽  
pp. 51-55
Author(s):  
Muhammad Yakub ◽  
M. Faiz Barchia ◽  
Usman K.J. Suharjo

Salak (Zalacca edulis Gaertn. Voss) is one of the most populair native fruits of Indonesia, consumed as a table fruit by most Indonesians. However, the yield of salak pondoh grown in Bengkulu is still lower than that in their native soil Java, believed to have more suitable soil properties for growing salak pondoh. The objective of this research were to evaluate the relationship of soil bulk density, available K, and slope to the productivity of salak pondoh grown at Padang Jaya Regency, North Bengkulu. We did a survey to collect data on soil bulk density (BD), available K (K), and slope as well as the productivity of salak pondoh grown at Padang Jaya from November 2017 to May 2017. The results showed that there was a significant relationship between soil characteristics and salak productivity, as shown in a linear model of Y = 2.929 -1.070 BD + 0.069 K - 0.126 Slope. Soil K was positively correlated to salak productivity, suggesting that salak productivity increased with an increase in soil K.  On the other than, soil bulk density and slope were negatively correlelated to salak productivity, indicating that salak productity decreased with an increase in slope and in soil bulk density.


2019 ◽  
Vol 29 (1) ◽  
pp. 43-52
Author(s):  
H. P. Pandey ◽  
P. Pandey ◽  
S. Pokhrel ◽  
R. A. Mandal

The study was carried out in three community-managed forests of Dadeldhura district located in Far West of Nepal in 2015. The objectives of the study were to analyze biomass and soil organic carbon (SOC) accumulation and observe how primary soil nutrients and other soil properties affect the biomass and SOC in these forests. Simple random sampling method was used with 0. 62% sampling intensity. Concentric circular sample plot of various sizes were laid out for the necessary data collection. ANOVA, Tukey’s HSD and correlation tests were performed. The carbon density differed significantly (p<0. 05) in the studied CFs. The Tukey’s test showed the BPCF had significantly higher (p<0. 05) carbon density than other CFs. The correlation between biomass density (t/ha) and soil bulk density was very weak and it was not significant. However, biomass density revealed significant (p<0.05) negative correlation with SOC(r = -0.38) and Phosphorous (r = -0.56) content in the soil. Biomass density had no significant correlation with rest of the parameters. Similarly, SOC had significant (p<0.05) positive correlation with all the parameters except with soil bulk density (p<0.05, r= -0. 88). Despite the higher biomass in forests, we found the lesser amount of SOC and primary soil nutrients in the soil. Similarly, acidic soils with higher contents of primary soil nutrients (NPK) had relatively higher SOC whereas higher bulk density decreased the SOC content. Results revealed that community-managed forests seemed a viable source of biomass production and carbon sink to combat the global environmental problem (global warming). These types of forests have conserved relatively the higher biomass (biomass carbon) than normally (business-as-usual )managed forests. This output would be a reference to the policy maker, national and international communities of diverse fields who are engaged in forest carbon services related activities such as reducing emission from deforestation and forest degradation(REDD), clean development mechanism (CDM) and forest management in terms of production. Similar studies are recommended in larger geographical areas and different ecological zones to generalize the inference.


Sign in / Sign up

Export Citation Format

Share Document