Pitch Classes Differ with Respect to Height

1984 ◽  
Vol 2 (2) ◽  
pp. 265-271 ◽  
Author(s):  
Diana Deutsch ◽  
F. Richard Moore ◽  
Mark Dolson

The pitch of a tone is considered to consist of two components: the rectilinear component of height and the circular component of chroma, or pitch class. In an experiment employing simultaneous sequences of Shepard tones, it is shown that tones in different positions on the chroma circle differ in height when generated under the same spectral amplitude envelope. Further, the directions of these differences remain constant when the envelope is centered at different positions along the spectrum, resulting in clear differences in the overall heights of the patterns.

1991 ◽  
Vol 34 (2) ◽  
pp. 415-426 ◽  
Author(s):  
Richard L. Freyman ◽  
G. Patrick Nerbonne ◽  
Heather A. Cote

This investigation examined the degree to which modification of the consonant-vowel (C-V) intensity ratio affected consonant recognition under conditions in which listeners were forced to rely more heavily on waveform envelope cues than on spectral cues. The stimuli were 22 vowel-consonant-vowel utterances, which had been mixed at six different signal-to-noise ratios with white noise that had been modulated by the speech waveform envelope. The resulting waveforms preserved the gross speech envelope shape, but spectral cues were limited by the white-noise masking. In a second stimulus set, the consonant portion of each utterance was amplified by 10 dB. Sixteen subjects with normal hearing listened to the unmodified stimuli, and 16 listened to the amplified-consonant stimuli. Recognition performance was reduced in the amplified-consonant condition for some consonants, presumably because waveform envelope cues had been distorted. However, for other consonants, especially the voiced stops, consonant amplification improved recognition. Patterns of errors were altered for several consonant groups, including some that showed only small changes in recognition scores. The results indicate that when spectral cues are compromised, nonlinear amplification can alter waveform envelope cues for consonant recognition.


2021 ◽  
Vol 11 (15) ◽  
pp. 6782
Author(s):  
Borko Đ. Bulajić ◽  
Marijana Hadzima-Nyarko ◽  
Gordana Pavić

The severity of vertical seismic ground motions is often factored into design regulations as a component of their horizontal counterparts. Furthermore, most design codes, including Eurocode 8, ignore the impact of local soil on vertical spectra. This paper investigates vertical pseudo-absolute acceleration spectral estimates, as well as the ratios of spectral estimates for strong motion in vertical and horizontal directions, for low to medium seismicity regions with deep local soil and deep geological sediments beneath the local soil. The case study region encompasses the city of Osijek in Croatia. New regional frequency-dependent empirical scaling equations are derived for the vertical spectra. According to these equations, for a 0.3 s spectral amplitude at deep soils atop deep geological sediments compared to the rock sites, the maximum amplification is 1.48 times. The spectra of vertical components of various real strong motions recorded in the surrounding region are compared to the empirical vertical response spectra. The new empirical equations are used to construct a Uniform Hazard Spectra for Osijek. The ratios of vertical to horizontal Uniform Hazard Spectra are generated, examined, and compared to Eurocode 8 recommendations. All the results show that local soil and deep geology conditions have a significant impact on vertical ground motions. The results also show that for deep soils atop deep geological strata, Eurocode 8 can underestimate the vertical to horizontal spectral ratios by a factor of three for Type 2 spectra while overestimating them by a factor of two for Type 1 spectra.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Majidah H. Majeed ◽  
Riyadh Khlf Ahmed

AbstractSpectral Amplitude Coding-Optical Codes Division Multiple Access (SAC-OCDMA) is a future multiplexing technique that witnessed a dramatic attraction for eliminating the problems of the internet in optical network field such as multiple-user access and speed’s growth of the files or data traffic. In this research article, the performance of SAC-OCDMA system based on two encoding–decoding multidiagonal (MD) and Walsh Hadamard (WH) codes is enhanced utilizing three different schemes of dispersion compensating fiber (DCF): pre-, post- and symmetrical compensation. The system is simulated using Optisystem version 7.0 and Optigrating version 4.2. The performance of the proposed system is specified in terms of bit error rate (BER), Q-factor and eye diagram. It has been observed that the compensated system based on MD code is performs much better compared to the system based on WH code. On the other hand, the compensated SAC-OCDMA system with symmetrical DCF has the lowest values of BER and largest values of Q-factor, so it is considered the best simulated scheme contrasted with pre- and post-DCF.


2020 ◽  
Vol 20 (05) ◽  
pp. 2050062
Author(s):  
Huiying Hu ◽  
Lincong Chen

As a new type of seismic resisting device, the self-centering system is attractive due to its excellent re-centering capability, but research on such a system under random seismic loadings is quite limited. In this paper, the stochastic response of a single-degree-of-freedom (SDOF) self-centering system driven by a white noise process is investigated. For this purpose, the original self-centering system is first approximated by an auxiliary nonlinear system, in which the equivalent damping and stiffness coefficients related to the amplitude envelope of the response are determined by a harmonic balance procedure. Subsequently, by the method of stochastic averaging, the amplitude envelope of the response of the equivalent nonlinear stochastic system is approximated by a Markovian process. The associated Fokker–Plank–Kolmogorov (FPK) equation is used to derive the stationary probability density function (PDF) of the amplitude envelope in a closed form. The effects of energy dissipation coefficient and yield displacement on the response of system are examined using the stationary PDF solution. Moreover, Monte Carlo simulations (MCS) are used for ascertaining the accuracy of the analytical solutions.


1975 ◽  
Vol 13 (2) ◽  
pp. 30 ◽  
Author(s):  
Paul Lansky

Sign in / Sign up

Export Citation Format

Share Document