deep soils
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 25)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Waqas Qasim ◽  
Yiming Zhao ◽  
Li Wan ◽  
Haofeng Lv ◽  
Shan Lin ◽  
...  

Abstract Background About 30 % of vegetables in China are produced in intensively managed greenhouses comprising flood irrigation and extreme rates of nitrogen fertilizers. Little is known about denitrification N losses. Methods Soil denitrification rates were measured by the acetylene inhibition technique applied to anaerobically incubated soil samples. Four different greenhouse management systems were differentiated: Conventional flood irrigation and over-fertilization (CIF, 800 kg N ha−1, 460 mm); CIF plus straw incorporation (CIF+S, 889 kg N ha−1, 460 mm); Drip fertigation with reduced fertilizer application rates (DIF, 314 kg N ha−1, 190 mm); DIF plus straw incorporation (DIF+S, 403 kg N ha−1, 190 mm). Soil denitrification was measured on nine sampling dates during the growing season (Feb 2019-May 2019) for the top-/ subsoil (0 – 20/ 20- 40 cm) and on three sampling dates for deep soils (40-60/ 80-100 cm). Data was used to constrain N-input-output balances of the different vegetable production systems. Results Rates of denitrification were at least one magnitude higher in topsoil than in sub- and deep soils. Total seasonal denitrification N losses for the 0 – 40 cm soil layer ranged from 76 (DIF) to 422 kg N ha−1 (CIF+S). Straw addition stimulated soil denitrification in top- and subsoil, but not in deep soil layers. Integrating our denitrification data (0-100 cm) with additional data on N leaching, N2O emissions, plant N uptake, and NH3 volatilization showed, that on average 50 % of added N fertilizers are lost due to denitrification. Conclusions Denitrification is likely the dominant environmental N loss pathway in greenhouse vegetable production systems. Reducing irrigation and fertilizer application rates while incorporating straw in soils allows the reduction of accumulated nitrate.


2021 ◽  
pp. 104985
Author(s):  
Borko Đ. Bulajić ◽  
Gordana Pavić ◽  
Marijana Hadzima-Nyarko
Keyword(s):  

2021 ◽  
Vol 11 (15) ◽  
pp. 6782
Author(s):  
Borko Đ. Bulajić ◽  
Marijana Hadzima-Nyarko ◽  
Gordana Pavić

The severity of vertical seismic ground motions is often factored into design regulations as a component of their horizontal counterparts. Furthermore, most design codes, including Eurocode 8, ignore the impact of local soil on vertical spectra. This paper investigates vertical pseudo-absolute acceleration spectral estimates, as well as the ratios of spectral estimates for strong motion in vertical and horizontal directions, for low to medium seismicity regions with deep local soil and deep geological sediments beneath the local soil. The case study region encompasses the city of Osijek in Croatia. New regional frequency-dependent empirical scaling equations are derived for the vertical spectra. According to these equations, for a 0.3 s spectral amplitude at deep soils atop deep geological sediments compared to the rock sites, the maximum amplification is 1.48 times. The spectra of vertical components of various real strong motions recorded in the surrounding region are compared to the empirical vertical response spectra. The new empirical equations are used to construct a Uniform Hazard Spectra for Osijek. The ratios of vertical to horizontal Uniform Hazard Spectra are generated, examined, and compared to Eurocode 8 recommendations. All the results show that local soil and deep geology conditions have a significant impact on vertical ground motions. The results also show that for deep soils atop deep geological strata, Eurocode 8 can underestimate the vertical to horizontal spectral ratios by a factor of three for Type 2 spectra while overestimating them by a factor of two for Type 1 spectra.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shihan Shan ◽  
Xiangjun Pei ◽  
Weiwei Zhan

The dynamic penetration test (DPT) and the Menard pressuremeter test (PMT) have been widely used in geotechnical survey of deep soils for megadam foundations in western China. The DPT measures are not well utilized due to the lack of correction factors and of empirical relationships for deep soils. This study investigates the relationships between the corrected DPT blow counts ( N 120 ′ ), pressuremeter modulus (EPMT), limit pressure (pL), deformation modulus (E0), and bearing capacity (fak) derived from the PMT results. Meanwhile, a nonlinear regression model is developed to predict the DPT correction factor (a) based on the raw DPT blow counts (N120) and the rod length (L) by integrating the available correction factors for shallow gravelly soils suggested by the code provisions and the deep soil data in this work. It is concluded that the proposed DPT correction factors match well with the code suggestions and the new compiled dataset, and the corrected DPT blow counts can be used to reasonably predict the engineering properties of deep sand and clay soils. Although the proposed correlations need to be tested among different soil types and regions, the results shed the light on in situ geotechnical tests and data utilization for deep and thick overburden.


2021 ◽  
Vol 11 (14) ◽  
pp. 6296
Author(s):  
Borko Đ. Bulajić ◽  
Marijana Hadzima-Nyarko ◽  
Gordana Pavić

In this paper, we demonstrate how UHS-based seismic microzonation can be applied in low-to-medium seismicity areas with deep local soil and deep geological deposits under the local soil. The case study area surrounds the city of Osijek, Croatia, which is in the south–central region of the Pannonian Basin. New frequency-dependent scaling equations are derived, and the empirical response spectra are compared to the spectra of real strong motions in the surrounding region. Empirical calculations for deep soil atop deep geological strata show a 37% reduction in short-period spectral amplitudes when compared to rock locations. This demonstrates that local soil amplification is mitigated by energy dissipation in deep soils. For vibration periods longer than 0.3 s, spectral amplitudes are being amplified. This amplification goes up to 2.37 times for vibration periods around 0.5 s. UHS spectra for Osijek are computed using regional seismicity estimates, data on local soil and deeper geological surroundings, and newly created regional empirical equations for scaling various spectral amplitudes. UHS amplitudes for Osijek are also compared to the Eurocode 8 spectra for ground type C. The results show that ratios of the maximum UHS amplitudes to PGA values are up to 46% larger than the corresponding 2.5 factor that is recommended by Eurocode 8 for horizontal spectra. The UHS results might be viewed as preliminary for Osijek and regions with similar seismicity and local soil and deep geology conditions. When the number of regional strong-motion records grows many times beyond what it is currently, it will be feasible to properly calibrate the scaling equations, resulting in more reliable and long-term UHS estimations for the area under consideration.


2021 ◽  
Author(s):  
Yuanhe Yang ◽  
Leiyi Chen ◽  
Kai Fang ◽  
Bin Wei ◽  
Shuqi Qin ◽  
...  

<p>Elucidating the processes underlying the persistence of soil organic matter (SOM) is a prerequisite for projecting soil carbon feedback to climate change. However, the potential role of plant carbon input in regulating the multi-layer SOM preservation over broad geographic scales remains unclear. Based on large-scale soil radiocarbon (Δ<sup>14</sup>C) measurements on the Tibetan Plateau, we found that plant carbon input was the major contributor to topsoil carbon destabilisation despite the significant associations of topsoil Δ<sup>14</sup>C with climatic and mineral variables as well as SOM chemical composition. By contrast, mineral protection by iron–aluminium oxides and cations became more important in preserving SOM in deep soils. These regional observations were confirmed by a global synthesis derived from the International Soil Radiocarbon Database (ISRaD). Our findings illustrate different effects of plant carbon input on SOM persistence across soil layers, providing new insights for models to better predict multi-layer soil carbon dynamics under changing environments.</p>


2021 ◽  
Author(s):  
Kyungjin Min ◽  
Eric Slessarev ◽  
Megan Patricia Kan ◽  
Karis Mcfarlane ◽  
Erik Oerter ◽  
...  

Climate-smart land management practices that replace shallow-rooted annual crop systems with deeply-rooted perennial plants can contribute to soil carbon sequestration. However, deep soil carbon accrual may be influenced by active microbial biomass and their capacity to assimilate fresh carbon at depth. Incorporating active microbial biomass, dormancy and growth in models can improve our ability to predict the capacity of soil to store carbon. But, so far, the microbial parameters that are needed for such modeling are poorly constrained, especially in deep soil layers. Here, we investigated whether a change in crop rooting depth affects microbial growth kinetics in deep soils compared to surface soils. We used a lab incubation experiment and growth kinetics model to estimate how microbial parameters vary along 240 cm of soil depth in profiles under shallow- (soy) and deeply-rooted plants (switch grass) 11 years after plant cover conversion. We also assessed resource origin and availability (total organic carbon, 14C, dissolved organic carbon, specific UV absorbance, total nitrogen, total dissolved nitrogen) along the soil profiles to examine associations between soil chemical and biological parameters. Even though root biomass was higher and rooting depth was deeper under switch grass than soy, resource availability and microbial growth parameters were generally similar between vegetation types. Instead, depth significantly influenced soil chemical and biological parameters. For example, resource availability, and total and relative active microbial biomass decreased with soil depth. Decreases in the relative active microbial biomass coincided with increased lag time (response time to external carbon inputs) along the soil profiles. Even at a depth of 210-240 cm, microbial communities were activated to grow by added resources within a day. Maximum specific growth rate decreased to a depth of 90 cm and then remained consistent in deeper layers. Our findings show that > 10 years of vegetation and rooting depth changes may not be long enough to alter microbial growth parameters, and suggest that at least a portion of the microbial community in deep soils can grow rapidly in response to added resources. Our study determined microbial growth parameters that can be used in models to simulate carbon dynamics in deep soil layers.


2021 ◽  
Author(s):  
Marianne Jennifer Datiles ◽  
Pedro Acevedo-Rodríguez

Abstract Senna spectabilis is an attractive small- to medium-sized (to about 10 m tall) multi-stemmed tree, native to Central and South America and naturalized in many other parts of the humid tropics, particularly the Philippines and East and southern Africa. It is a fast-growing species, particularly on deep soils, and is fire- and termite-resistant and tolerant of strongly acid soils. It is reported to be easier to raise, less susceptible to pests and diseases, and more drought-resistant than Senna siamea. It is often planted for fuelwood, as an ornamental and as a shade tree in agroforestry situations. Although a legume, it is not a nitrogen-fixing species but is nevertheless useful for fodder, mulches, and as a honey source. Its rapid regeneration and growth make it a potential weed. The wood is of small dimensions, commonly used as fuelwood; posts; building poles; and general utility. Further research is needed on the cultural management of S. spectabilis.


2021 ◽  
Author(s):  
Jaivime Evaristo ◽  
Yanan Huang ◽  
Zhi Li ◽  
Kwok P. Chun ◽  
Edwin H. Sutanudjaja ◽  
...  

<p>Understanding the movement of water in soils is important for estimating subsurface water reserves. Despite the advances made in understanding water movement, very few tools can directly ‘follow the water’. Tritium, a tracer that decays with time and resides within individual water molecules, is one such tool. Some tritium is produced naturally, others result from the nuclear bomb test era of the 1960s. Since the atmospheric nuclear tests ended following the Partial Nuclear Test Ban Treaty in 1963, however, the amount of tritium in soil water has declined, putting into question the usefulness of the environmental tritium method for tracking water movement in future studies. Our study explores the usefulness of the tritium method. Our results highlight the narrow window of time, over the next 20 years depending on the model used, within which the tritium method may still be applicable. We call on scientists to now take full advantage of the environmental tritium method in places where the tool may still be applicable. A richer understanding of water movement in soils is ultimately critical for ecosystem services and water resources management, particularly in semi-arid environments with deep soils.</p>


Sign in / Sign up

Export Citation Format

Share Document