Thomas M. Curley, ed., A Course of Lectures on the English Law Delivered at the University of Oxford 1767–1773 by Sir Robert Chambers, Madison: University of Wisconsin Press, 1986. 2 volumes, pp. xix, 483; xv, 445 (ISBN 0-299-1011-1 and 0-299-10012-X).

1989 ◽  
Vol 7 (2) ◽  
pp. 387-389
Author(s):  
J. H. Baker
Author(s):  
Douglass F. Taber

Control of the absolute configuration of adjacent alkylated stereogenic centers is a classic challenge in organic synthesis. In the course of the synthesis of (–)-hybridalactone 4, Alois Fürstner of the Max-Planck-Institut Mülheim effected (J. Am. Chem. Soc. 2011, 133, 13471) catalytic enantioselective conjugate addition to the simple acceptor 1. The initial adduct, formed in 80% ee, could readily be recrystallized to high ee. In an alternative approach to high ee 2,3-dialkyl γ-lactones, David M. Hodgson of the University of Oxford cyclized (Org. Lett. 2011, 13, 5751) the alkyne 5 to an aldehyde, which was condensed with 6 to give 7. Coupling with 8 then delivered (+)-anthecotulide 9. The enantiomerically pure diol 10 is readily available from acetylacetone. Weiping Tang of the University of Wisconsin dissolved (Org. Lett. 2011, 13, 3664) the symmetry of 10 by Pd-mediated cyclocarbonylation. The conversion of the lactone 11 to (–)-kumausallene 12 was enabled by an elegant intramolecular bromoetherification. Shoji Kobayshi of the Osaka Institute of Technology developed (J. Org. Chem. 2011, 76, 7096) a powerful oxy-Favorskii rearrangement that enabled the preparation of both four-and five-membered rings with good diastereocontrol, as exemplified by the conversion of 13 to 14. With the electron-withdrawing ether oxygen adjacent to the ester carbonyl, Dibal reduction of 14 proceeded cleanly to the aldehyde. Addition of ethyl lithium followed by deprotection completed the synthesis of (±)-communiol E. En route to (–)-exiguolide 18, Karl A. Scheidt of Northwestern University showed (Angew. Chem. Int. Ed. 2011, 50, 9112) that 16 could be cyclized efficiently to 17. The cyclization may be assisted by a scaffolding effect from the dioxinone ring. Dimeric macrolides such as cyanolide A 21 are usually prepared by lactonization of the corresponding hydroxy acid. Scott D. Rychnovsky of the University of California Irvine devised (J. Am. Chem. Soc. 2011, 133, 9727) a complementary strategy, the double Sakurai dimerization of the silyl acetal 19 to 20.


Author(s):  
Allison K. Griffith ◽  
Tristan H. Lambert

The α-C–H functionalization of piperidine catalyzed by tantalum complex 1 to pro­duce amine 2 was developed (Org. Lett. 2013, 15, 2182) by Laurel L. Schafer at the University of British Columbia. An asymmetric diamination of diene 3 with diaziri­dine reagent 4 under palladium catalysis to furnish cyclic sulfamide 5 was developed (Org. Lett. 2013, 15, 796) by Yian Shi at Colorado State University. Enantioenriched β-fluoropiperdine 8 was prepared (Angew. Chem. Int. Ed. 2013, 52, 2469) via amino­fluorocyclization of 6 with hypervalent iodide 7, as reported by Cristina Nevado at the University of Zurich. Erick M. Carreira at ETH Zürich disclosed (J. Am. Chem. Soc. 2013, 135, 6814) a ruthenium-catalyzed hydrocarbamoylation of allylic formamide 9 to yield pyrrolidone 10. Hans-Günther Schmalz at the University of Köln disclosed (Angew. Chem. Int. Ed. 2013, 52, 1576) an asymmetric hydrocyanation of styrene 11 with Ni(cod)₂ and phosphine–phosphite ligand 12 to yield exclusively the branched cyanide 13. A simi­lar transformation of styrene 11 to the hydroxycarbonylated product 15 was catalyzed (Chem. Commun. 2013, 49, 3306) by palladium complex 14, as reported by Matthew L. Clarke at the University of St Andrews. Feng-Ling Qing at the Chinese Academy of Sciences found (Angew. Chem. Int. Ed. 2013, 52, 2198) that the hydrotrifluoromethylation of unactivated alkene 16 to 17 was catalyzed by silver nitrate. The same transformation was also reported (J. Am.Chem. Soc. 2013, 135, 2505) by Véronique Gouverneur at the University of Oxford using a ruthenium photocatalyst and the Umemoto reagent 18. Clark R. Landis at the University of Wisconsin, Madison reported (Angew. Chem. Int. Ed. 2013, 52, 1564) a one-pot asymmetric hydroformylation using 21 followed by Wittig olefination to transform alkene 19 into the γ-chiral α,β-unsaturated carbonyl compound 20. Debabrata Mati at the Indian Institute of Technology Bombay found (J. Am. Chem. Soc. 2013, 135, 3355) that alkene 22 could be nitrated stereoselectively with silver nitrite and TEMPO to form alkene 23. Damian W. Young at the Broad Institute disclosed (Org. Lett. 2013, 15, 1218) that a macrocyclic vinylsiloxane 24, which was synthesized via an E-selective ring clos­ing metathesis reaction, could be functionalized to make either E- or Z-alkenes, 25 and 26.


Sign in / Sign up

Export Citation Format

Share Document