Periodic and Aperiodic Behaviour in Discrete One-Dimensional Dynamical Systems

Author(s):  
JEAN-MICHEL GRANDMONT
2020 ◽  
Vol 61 (12) ◽  
pp. 122702
Author(s):  
Shousuke Ohmori ◽  
Yoshihiro Yamazaki

1994 ◽  
Vol 49 (12) ◽  
pp. 1241-1247 ◽  
Author(s):  
G. Zumofen ◽  
J. Klafter

Abstract We study transport in dynamical systems characterized by intermittent chaotic behavior with coexistence of dispersive motion due to periods of localization, and of enhanced diffusion due to periods of laminar motion. This transport is discussed within the continuous-time random walk approach which applies to both dispersive and enhanced motions. We analyze the coexistence for the standard map and for a one-dimensional map.


1995 ◽  
Vol 50 (12) ◽  
pp. 1123-1127
Author(s):  
R. Stoop ◽  
W.-H. Steeb

Abstract The concept of generalized Frobenius-Perron operators is applied to multivariante nonlinear dynamical systems, and the associated generalized free energies are investigated. As important applications, diffusion-related free energies obtained from normally and superlinearly diffusive one-dimensional maps are discussed.


2010 ◽  
Vol 24 (28) ◽  
pp. 5495-5503
Author(s):  
SHUTANG LIU ◽  
FUYAN SUN ◽  
JIE SUN

This article summarizes the uniformity law of spatial physics kinematic systems, and studies the chaos and bifurcation behavior of the uniform system in space. In particular, it also fully explains the relation among the uniform system, the coupled map lattice model which has attracted considerable interest currently, and one-dimensional nonlinear dynamical systems.


2005 ◽  
Vol 15 (04) ◽  
pp. 1267-1284 ◽  
Author(s):  
V. AVRUTIN ◽  
M. SCHANZ

In this work a one-dimensional piecewise-smooth dynamical system, representing a Poincaré return map for dynamical systems of the Lorenz type, is investigated. The system shows a bifurcation scenario similar to the classical period-doubling one, but which is influenced by so-called border collision phenomena and denoted as border collision period-doubling bifurcation scenario. This scenario is formed by a sequence of pairs of bifurcations, whereby each pair consists of a border collision bifurcation and a pitchfork bifurcation. The mechanism leading to this scenario and its characteristic properties, like symmetry-breaking and symmetry-recovering as well as emergence of coexisting attractors, are investigated.


2007 ◽  
Vol 13 (8-9) ◽  
pp. 821-828 ◽  
Author(s):  
V. V. Fedorenko ◽  
E. Yu. Romanenko ◽  
A. N. Sharkovsky

2016 ◽  
Vol 7 (4) ◽  
pp. 261
Author(s):  
Prince Amponsah Kwabi ◽  
William Obeng Denteh ◽  
Richard Kena Boadi

This paper focuses on the study of a one-dimensional topological dynamical system, the tent function. We give a good background to the theory of dynamical systems while establishing the important asymptotic properties of topological dynamical systems that distinguishes it from other fields by way of an example - the tent function. A precise definition of the tent function is given and iterates are clearly shown using the phase diagrams. By this same method, chaos in the tent map is shown as iterates become higher. We also show that the tent map has infinitely many chaotic orbits and also express some important features of chaos such as topological transitivity, boundedness and sensitivity to change in initial conditions from a topological viewpoint.


Sign in / Sign up

Export Citation Format

Share Document