Transfusion Therapy

2017 ◽  
Author(s):  
Ronald Chang ◽  
John B. Holcomb

Exsanguination occurs rapidly after trauma (median 2 to 3 hours after admission) and is the leading cause of preventable trauma deaths. The modern treatment for traumatic hemorrhagic shock is simultaneous mechanical hemorrhage control and damage control resuscitation (DCR), which emphasizes using plasma as the primary means for volume expansion. Other core DCR principles include minimization of crystalloid, permissive hypotension, and goal-directed resuscitation. The treatment of traumatic hemorrhage is complicated by trauma-induced coagulopathy (TIC); DCR is thought to address TIC directly despite incomplete understanding of the underlying mechanisms. Recent data point to a 1:1:1 ratio of plasma and platelets to red blood cells as the optimal blood product ratio for acute traumatic hemorrhage. However, this paradigm may soon be supplanted by a transition back to whole blood. Although it is intuitive to apply these same protocols and algorithms to patients with nontraumatic hemorrhage, the scientific evidence is lacking. Key words: endotheliopathy, hemorrhage, massive transfusion, trauma-induced coagulopathy

2017 ◽  
Author(s):  
Ronald Chang ◽  
John B. Holcomb

Exsanguination occurs rapidly after trauma (median 2 to 3 hours after admission) and is the leading cause of preventable trauma deaths. The modern treatment for traumatic hemorrhagic shock is simultaneous mechanical hemorrhage control and damage control resuscitation (DCR), which emphasizes using plasma as the primary means for volume expansion. Other core DCR principles include minimization of crystalloid, permissive hypotension, and goal-directed resuscitation. The treatment of traumatic hemorrhage is complicated by trauma-induced coagulopathy (TIC); DCR is thought to address TIC directly despite incomplete understanding of the underlying mechanisms. Recent data point to a 1:1:1 ratio of plasma and platelets to red blood cells as the optimal blood product ratio for acute traumatic hemorrhage. However, this paradigm may soon be supplanted by a transition back to whole blood. Although it is intuitive to apply these same protocols and algorithms to patients with nontraumatic hemorrhage, the scientific evidence is lacking. Key words: endotheliopathy, hemorrhage, massive transfusion, trauma-induced coagulopathy


2018 ◽  
Author(s):  
Ronald Chang ◽  
John B. Holcomb

Exsanguination occurs rapidly after trauma (median 2 to 3 hours after admission) and is the leading cause of preventable trauma deaths. The modern treatment for traumatic hemorrhagic shock is simultaneous mechanical hemorrhage control and damage control resuscitation (DCR), which emphasizes using plasma as the primary means for volume expansion. Other core DCR principles include minimization of crystalloid, permissive hypotension, and goal-directed resuscitation. The treatment of traumatic hemorrhage is complicated by trauma-induced coagulopathy (TIC); DCR is thought to address TIC directly despite incomplete understanding of the underlying mechanisms. Recent data point to a 1:1:1 ratio of plasma and platelets to red blood cells as the optimal blood product ratio for acute traumatic hemorrhage. However, this paradigm may soon be supplanted by a transition back to whole blood. Although it is intuitive to apply these same protocols and algorithms to patients with nontraumatic hemorrhage, the scientific evidence is lacking. Key words: endotheliopathy, hemorrhage, massive transfusion, trauma-induced coagulopathy


2018 ◽  
Author(s):  
Ronald Chang ◽  
John B. Holcomb

Exsanguination occurs rapidly after trauma (median 2 to 3 hours after admission) and is the leading cause of preventable trauma deaths. The modern treatment for traumatic hemorrhagic shock is simultaneous mechanical hemorrhage control and damage control resuscitation (DCR), which emphasizes using plasma as the primary means for volume expansion. Other core DCR principles include minimization of crystalloid, permissive hypotension, and goal-directed resuscitation. The treatment of traumatic hemorrhage is complicated by trauma-induced coagulopathy (TIC); DCR is thought to address TIC directly despite incomplete understanding of the underlying mechanisms. Recent data point to a 1:1:1 ratio of plasma and platelets to red blood cells as the optimal blood product ratio for acute traumatic hemorrhage. However, this paradigm may soon be supplanted by a transition back to whole blood. Although it is intuitive to apply these same protocols and algorithms to patients with nontraumatic hemorrhage, the scientific evidence is lacking. Key words: endotheliopathy, hemorrhage, massive transfusion, trauma-induced coagulopathy


2021 ◽  
Vol 8 ◽  
Author(s):  
Thomas H. Edwards ◽  
Anthony E. Pusateri ◽  
Erin Long Mays ◽  
James A. Bynum ◽  
Andrew P. Cap

Since the inception of recent conflicts in Afghanistan and Iraq, transfusion practices in human military medicine have advanced considerably. Today, US military physicians recognize the need to replace the functionality of lost blood in traumatic hemorrhagic shock and whole blood is now the trauma resuscitation product of choice on the battlefield. Building on wartime experiences, military medicine is now one of the country's strongest advocates for the principle of hemostatic resuscitation using whole blood or balanced blood components as the primary means of resuscitation as early as possibly following severe trauma. Based on strong evidence to support this practice in human combat casualties and in civilian trauma care, military veterinarians strive to practice similar hemostatic resuscitation for injured Military Working Dogs. To this end, canine whole blood has become increasingly available in forward environments, and non-traditional storage options for canine blood and blood components are being explored for use in canine trauma. Blood products with improved shelf-life and ease of use are not only useful for military applications, but may also enable civilian general and specialty practices to more easily incorporate hemostatic resuscitation approaches to canine trauma care.


2019 ◽  
Vol 30 (2) ◽  
pp. 139-150
Author(s):  
Heather M. Passerini

Health care professionals must understand the impact of blood product transfusions and transfusion therapy procedures to ensure high-quality patient care, positive outcomes, and wise use of resources in blood management programs. Understanding transfusions of blood and blood products is also important because of the number of treatments performed, which affects individual patients and health care system resources. This article reviews research findings to acquaint health care professionals with the most successful protocols for blood, blood product, and coagulation factor transfusions. Damage control resuscitation in bleeding trauma patients, protocols for patients without trauma who are undergoing surgical procedures that place them at risk for excessive bleeding, and protocols for patients with sepsis are addressed. Emerging research continues to help guide mass transfusion treatments (restrictive vs liberal, balanced, and goal-directed treatment). Although available study results provide some guidance, questions remain. Additional research by health care professionals is needed.


2019 ◽  
Vol 86 (1) ◽  
pp. 163-166 ◽  
Author(s):  
David N. Naumann ◽  
Mansoor A. Khan ◽  
Jason E. Smith ◽  
Rory Rickard ◽  
Tom Woolley

Author(s):  
Eboni I Lance ◽  
Andrew W. Zimmerman

Sickle cell disease is a genetic hematological disorder involving red blood cells that become deformed when stressed. Patients with homozygous hemoglobin SS disease often have multiple systemic and neurologic complications, particularly stroke. Intellectual disability is commonly seen in the population, in patients with and without a history of stroke, attributed to different underlying mechanisms of brain injury. Autism is rare and not described in sickle cell disease in the literature to date. Many treatments (chronic transfusion therapy, hydroxyurea, bone marrow transplant) are in trials at this time to see if risk of stroke and other neurologic complications can be reduced (ClinicalTrials.gov identifiers: NCT01425307, NCT01389024, NCT00152113).


Sign in / Sign up

Export Citation Format

Share Document