scholarly journals UNDERLYING MECHANISMS OF AND TRANSFUSION THERAPY FOR OBSTETRIC MASSIVE HEMORRHAGE

2012 ◽  
Vol 58 (6) ◽  
pp. 745-752 ◽  
Author(s):  
Koji Yamamoto
2017 ◽  
Author(s):  
Ronald Chang ◽  
John B. Holcomb

Exsanguination occurs rapidly after trauma (median 2 to 3 hours after admission) and is the leading cause of preventable trauma deaths. The modern treatment for traumatic hemorrhagic shock is simultaneous mechanical hemorrhage control and damage control resuscitation (DCR), which emphasizes using plasma as the primary means for volume expansion. Other core DCR principles include minimization of crystalloid, permissive hypotension, and goal-directed resuscitation. The treatment of traumatic hemorrhage is complicated by trauma-induced coagulopathy (TIC); DCR is thought to address TIC directly despite incomplete understanding of the underlying mechanisms. Recent data point to a 1:1:1 ratio of plasma and platelets to red blood cells as the optimal blood product ratio for acute traumatic hemorrhage. However, this paradigm may soon be supplanted by a transition back to whole blood. Although it is intuitive to apply these same protocols and algorithms to patients with nontraumatic hemorrhage, the scientific evidence is lacking. Key words: endotheliopathy, hemorrhage, massive transfusion, trauma-induced coagulopathy


2017 ◽  
Author(s):  
Ronald Chang ◽  
John B. Holcomb

Exsanguination occurs rapidly after trauma (median 2 to 3 hours after admission) and is the leading cause of preventable trauma deaths. The modern treatment for traumatic hemorrhagic shock is simultaneous mechanical hemorrhage control and damage control resuscitation (DCR), which emphasizes using plasma as the primary means for volume expansion. Other core DCR principles include minimization of crystalloid, permissive hypotension, and goal-directed resuscitation. The treatment of traumatic hemorrhage is complicated by trauma-induced coagulopathy (TIC); DCR is thought to address TIC directly despite incomplete understanding of the underlying mechanisms. Recent data point to a 1:1:1 ratio of plasma and platelets to red blood cells as the optimal blood product ratio for acute traumatic hemorrhage. However, this paradigm may soon be supplanted by a transition back to whole blood. Although it is intuitive to apply these same protocols and algorithms to patients with nontraumatic hemorrhage, the scientific evidence is lacking. Key words: endotheliopathy, hemorrhage, massive transfusion, trauma-induced coagulopathy


2018 ◽  
Author(s):  
Ronald Chang ◽  
John B. Holcomb

Exsanguination occurs rapidly after trauma (median 2 to 3 hours after admission) and is the leading cause of preventable trauma deaths. The modern treatment for traumatic hemorrhagic shock is simultaneous mechanical hemorrhage control and damage control resuscitation (DCR), which emphasizes using plasma as the primary means for volume expansion. Other core DCR principles include minimization of crystalloid, permissive hypotension, and goal-directed resuscitation. The treatment of traumatic hemorrhage is complicated by trauma-induced coagulopathy (TIC); DCR is thought to address TIC directly despite incomplete understanding of the underlying mechanisms. Recent data point to a 1:1:1 ratio of plasma and platelets to red blood cells as the optimal blood product ratio for acute traumatic hemorrhage. However, this paradigm may soon be supplanted by a transition back to whole blood. Although it is intuitive to apply these same protocols and algorithms to patients with nontraumatic hemorrhage, the scientific evidence is lacking. Key words: endotheliopathy, hemorrhage, massive transfusion, trauma-induced coagulopathy


Author(s):  
Eboni I Lance ◽  
Andrew W. Zimmerman

Sickle cell disease is a genetic hematological disorder involving red blood cells that become deformed when stressed. Patients with homozygous hemoglobin SS disease often have multiple systemic and neurologic complications, particularly stroke. Intellectual disability is commonly seen in the population, in patients with and without a history of stroke, attributed to different underlying mechanisms of brain injury. Autism is rare and not described in sickle cell disease in the literature to date. Many treatments (chronic transfusion therapy, hydroxyurea, bone marrow transplant) are in trials at this time to see if risk of stroke and other neurologic complications can be reduced (ClinicalTrials.gov identifiers: NCT01425307, NCT01389024, NCT00152113).


2018 ◽  
Author(s):  
Ronald Chang ◽  
John B. Holcomb

Exsanguination occurs rapidly after trauma (median 2 to 3 hours after admission) and is the leading cause of preventable trauma deaths. The modern treatment for traumatic hemorrhagic shock is simultaneous mechanical hemorrhage control and damage control resuscitation (DCR), which emphasizes using plasma as the primary means for volume expansion. Other core DCR principles include minimization of crystalloid, permissive hypotension, and goal-directed resuscitation. The treatment of traumatic hemorrhage is complicated by trauma-induced coagulopathy (TIC); DCR is thought to address TIC directly despite incomplete understanding of the underlying mechanisms. Recent data point to a 1:1:1 ratio of plasma and platelets to red blood cells as the optimal blood product ratio for acute traumatic hemorrhage. However, this paradigm may soon be supplanted by a transition back to whole blood. Although it is intuitive to apply these same protocols and algorithms to patients with nontraumatic hemorrhage, the scientific evidence is lacking. Key words: endotheliopathy, hemorrhage, massive transfusion, trauma-induced coagulopathy


Blood ◽  
2014 ◽  
Vol 124 (20) ◽  
pp. 3052-3058 ◽  
Author(s):  
Pär I. Johansson ◽  
Jakob Stensballe ◽  
Roberto Oliveri ◽  
Charles E. Wade ◽  
Sisse R. Ostrowski ◽  
...  

Abstract Massive hemorrhage is associated with coagulopathy and high mortality. The transfusion guidelines up to 2006 recommended that resuscitation of massive hemorrhage should occur in successive steps using crystalloids, colloids, and red blood cells (RBCs) in the early phase and plasma and platelets in the late phase. With the introduction of the cell-based model of hemostasis in the mid-1990s, our understanding of the hemostatic process and of coagulopathy has improved. This has contributed to a change in resuscitation strategy and transfusion therapy of massive hemorrhage along with an acceptance of the adequacy of whole blood hemostatic tests to monitor these patients. Thus, in 2005, a strategy aiming at avoiding coagulopathy by proactive resuscitation with blood products in a balanced ratio of RBC:plasma:platelets was introduced, and this has been reported to be associated with reduced mortality in observational studies. Concurrently, whole blood viscoelastic hemostatic assays have gained acceptance by allowing a rapid and timely identification of coagulopathy along with enabling an individualized, goal-directed transfusion therapy. These strategies joined together seem beneficial for patient outcome, although final evidence on outcome from randomized controlled trials are lacking. We present how we in Copenhagen and Houston, today, manage patients with massive hemorrhage.


2019 ◽  
Vol 65 (5) ◽  
pp. 828-832
Author(s):  
Mitsue Noro ◽  
Seishou Uematsu ◽  
Masahiro Anan ◽  
Atsuko Imai ◽  
Hiroko Oki ◽  
...  

2014 ◽  
Vol 121 (3) ◽  
pp. 450-458 ◽  
Author(s):  
Richard P. Dutton ◽  
Lorri A. Lee ◽  
Linda S. Stephens ◽  
Karen L. Posner ◽  
Joanna M. Davies ◽  
...  

Abstract Background: Hemorrhage is a potentially preventable cause of adverse outcomes in surgical and obstetric patients. New understanding of the pathophysiology of hemorrhagic shock, including development of coagulopathy, has led to evolution of recommendations for treatment. However, no recent study has examined the legal outcomes of these claims. The authors reviewed closed anesthesia malpractice claims related to hemorrhage, seeking common factors to guide future management strategies. Methods: The authors analyzed 3,211 closed surgical or obstetric anesthesia malpractice claims from 1995 to 2011 in the Anesthesia Closed Claims Project. Claims where patient injury was attributed to hemorrhage were compared with all other surgical and obstetric claims. Risk factors for hemorrhage and coagulopathy, clinical factors, management, and communication issues were abstracted from claim narratives to identify recurrent patterns. Results: Hemorrhage occurred in 141 (4%) claims. Obstetrics accounted for 30% of hemorrhage claims compared with 13% of nonhemorrhage claims (P < 0.001); thoracic or lumbar spine surgery was similarly overrepresented (24 vs. 6%, P < 0.001). Mortality was higher in hemorrhage than nonhemorrhage claims (77 vs. 27%, P < 0.001), and anesthesia care was more often judged to be less than appropriate (55 vs. 38%, P < 0.001). Median payments were higher in hemorrhage versus nonhemorrhage claims ($607,750 vs. $276,000, P < 0.001). Risk factors for hemorrhage and coagulopathy were common, and initiation of transfusion therapy was commonly delayed. Conclusions: Hemorrhage is a rare, but serious, cause of anesthesia malpractice claims. Understanding which patients are at risk can aid in patient referral decisions, design of institutional systems for responding to hemorrhage, and education of surgeons, obstetricians, and anesthesiologists.


2008 ◽  
Vol 44 ◽  
pp. 11-26 ◽  
Author(s):  
Ralph Beneke ◽  
Dieter Böning

Human performance, defined by mechanical resistance and distance per time, includes human, task and environmental factors, all interrelated. It requires metabolic energy provided by anaerobic and aerobic metabolic energy sources. These sources have specific limitations in the capacity and rate to provide re-phosphorylation energy, which determines individual ratios of aerobic and anaerobic metabolic power and their sustainability. In healthy athletes, limits to provide and utilize metabolic energy are multifactorial, carefully matched and include a safety margin imposed in order to protect the integrity of the human organism under maximal effort. Perception of afferent input associated with effort leads to conscious or unconscious decisions to modulate or terminate performance; however, the underlying mechanisms of cerebral control are not fully understood. The idea to move borders of performance with the help of biochemicals is two millennia old. Biochemical findings resulted in highly effective substances widely used to increase performance in daily life, during preparation for sport events and during competition, but many of them must be considered as doping and therefore illegal. Supplements and food have ergogenic potential; however, numerous concepts are controversially discussed with respect to legality and particularly evidence in terms of usefulness and risks. The effect of evidence-based nutritional strategies on adaptations in terms of gene and protein expression that occur in skeletal muscle during and after exercise training sessions is widely unknown. Biochemical research is essential for better understanding of the basic mechanisms causing fatigue and the regulation of the dynamic adaptation to physical and mental training.


Sign in / Sign up

Export Citation Format

Share Document