Dissociative Disorders and Their Clinical Management Part One: Dissociative Amnesia (Including Its Variant Dissociative Fugue)

2018 ◽  
Author(s):  
Angelica Staniloiu ◽  
Hans Markowitsch

Dissociative disorders are heterogeneous with respect to clinical features, course, antecedents and treatment. Among them, dissociative amnesia occupies a special place, at times encroaching on the borders between neurology and psychiatry. Herein we describe dissociative amnesia according to the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders and outline data on its epidemiology, neurobiology, neuroimaging, clinical and differential diagnosis, neuropsychology, comorbidities, prognosis, treatment and rehabilitation. To enable a neuroscientific approach to its diagnosis, we outline the memory division into short-term and long-term memory, elaborating on the content-based classification of the long-term memory systems. Dissociative amnesia most commonly manifests itself in its retrograde variants (including dissociative fugue), but anterograde variants can also occur. Dissociative amnesia may be overlooked when it occurs on a background of mixed antecedents and comorbidities. Comprehensive neuropsychological assessment – including tests tapping on all memory systems and symptom validity tests – is still insufficiently integrated in the clinical practice, although it could aid in securing an accurate diagnosis, especially in cases with mixed antecedents or concomitant forensic or litigation backgrounds. Presently there is a paucity of treatment and rehabilitation methods for dissociative amnesia. Developing research evidence-based consensus guidelines for diagnosis and treatment is an essential goal. This review contains 6 figures, 7 tables, and 60 references. Key Words : consciousness, episodic-autobiographical memory, mnestic block syndrome, neuroimaging, serial-parallel-independent model, personal identity, stressful life events, malingering, trauma, feigning

2018 ◽  
Vol 72 (5) ◽  
pp. 1005-1028 ◽  
Author(s):  
Franziska Orscheschek ◽  
Tilo Strobach ◽  
Torsten Schubert ◽  
Timothy Rickard

There is evidence in the literature that two retrievals from long-term memory cannot occur in parallel. To date, however, that work has explored only the case of two retrievals from newly acquired episodic memory. These studies demonstrated a retrieval bottleneck even after dual-retrieval practice. That retrieval bottleneck may be a global property of long-term memory retrieval, or it may apply only to the case of two retrievals from episodic memory. In the current experiments, we explored whether that apparent dual-retrieval bottleneck applies to the case of one retrieval from episodic memory and one retrieval from highly overlearned semantic memory. Across three experiments, subjects learned to retrieve a left or right keypress response form a set of 14 unique word cues (e.g., black—right keypress). In addition, they learned a verbal response which involved retrieving the antonym of the presented cue (e.g., black—“white”). In the dual-retrieval condition, subjects had to retrieve both the keypress response and the antonym word. The results suggest that the retrieval bottleneck is superordinate to specific long-term memory systems and holds across different memory components. In addition, the results support the assumption of a cue-level response chunking account of learned retrieval parallelism.


2019 ◽  
Author(s):  
Annalise Miner ◽  
Mark Schurgin ◽  
Timothy F. Brady

Long-term memory is often considered easily corruptible, imprecise and inaccurate, especially in comparison to working memory. However, most research used to support these findings relies on weak long-term memories: those where people have had only one brief exposure to an item. Here we investigated the fidelity of visual long-term memory in more naturalistic setting, with repeated exposures, and ask how it compares to visual working memory fidelity. Using psychophysical methods designed to precisely measure the fidelity of visual memory, we demonstrate that long-term memory for the color of frequently seen objects is as accurate as working memory for the color of a single item seen 1 second ago. In particular, we show that repetition greatly improves long-term memory, including the ability to discriminate an item from a very similar item ('fidelity'), in both a lab setting (Exps. 1-3) and a naturalistic setting (brand logos, Exp. 4). Overall our results demonstrate the impressive nature of visual long-term memory fidelity, which we find is even higher fidelity than previously indicated in situations involving repetitions. Furthermore, our results suggest that there is no distinction between the fidelity of visual working memory and visual long-term memory, but instead both memory systems are capable of storing similar incredibly high fidelity memories under the right circumstances. Our results also provide further evidence that there is no fundamental distinction between the ‘precision’ of memory and the ‘likelihood of retrieving a memory’, instead suggesting a single continuous measure of memory strength best accounts for working and long-term memory.


2015 ◽  
pp. 260-302
Author(s):  
Michael W. Eysenck ◽  
Mark T. Keane

Biology ◽  
2014 ◽  
Vol 4 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Barbara Berger ◽  
Serif Omer ◽  
Tamas Minarik ◽  
Annette Sterr ◽  
Paul Sauseng

2018 ◽  
Vol 30 (2) ◽  
pp. 223-237 ◽  
Author(s):  
Natalie Biderman ◽  
Roy Luria ◽  
Andrei R. Teodorescu ◽  
Ron Hajaj ◽  
Yonatan Goshen-Gottstein

How detailed are long-term-memory representations compared with working memory representations? Recent research has found an equal fidelity bound for both memory systems, suggesting a novel general constraint on memory. Here, we assessed the replicability of this discovery. Participants (total N = 72) were presented with colored real-life objects and were asked to recall the colors using a continuous color wheel. Deviations from study colors were modeled to generate two estimates of color memory: the variability of remembered colors—fidelity—and the probability of forgetting the color. Estimating model parameters using both maximum-likelihood estimation and Bayesian hierarchical modeling, we found that working memory had better fidelity than long-term memory (Experiments 1 and 2). Furthermore, within each system, fidelity worsened as a function of time-correlated mechanisms (Experiments 2 and 3). We conclude that fidelity is subject to decline across and within memory systems. Thus, the justification for a general fidelity constraint in memory does not seem to be valid.


2015 ◽  
Vol 26 (3) ◽  
pp. 1176-1186 ◽  
Author(s):  
T. P. Zanto ◽  
W. C. Clapp ◽  
M. T. Rubens ◽  
J. Karlsson ◽  
A. Gazzaley

2015 ◽  
Vol 25 (4) ◽  
pp. 847-858 ◽  
Author(s):  
Anders Högberg ◽  
Peter Gärdenfors ◽  
Lars Larsson

This article discusses the relation between knowing, learning and teaching in relation to early Palaeolithic technologies. We begin by distinguishing between three kinds of knowledge: knowing how, knowing what and knowing that. We discuss the relation between these types of knowledge and different forms of learning and long-term memory systems. On the basis of this analysis, we present three types of teaching: (1) helping and correcting; (2) showing; and (3) explaining. We then use this theoretical framework to suggest what kinds of teaching are required for the pre-Oldowan, the Oldowan, the early Acheulean and the late Acheulean stone-knapping technologies. As a general introductory overview to this special section, the text concludes with a brief presentation of the papers included.


2021 ◽  
Vol 64 (2) ◽  
pp. 359-370
Author(s):  
Jerker Rönnberg ◽  
Emil Holmer ◽  
Mary Rudner

Purpose The purpose of this study was to conceptualize the subtle balancing act between language input and prediction (cognitive priming of future input) to achieve understanding of communicated content. When understanding fails, reconstructive postdiction is initiated. Three memory systems play important roles: working memory (WM), episodic long-term memory (ELTM), and semantic long-term memory (SLTM). The axiom of the Ease of Language Understanding (ELU) model is that explicit WM resources are invoked by a mismatch between language input—in the form of rapid automatic multimodal binding of phonology—and multimodal phonological and lexical representations in SLTM. However, if there is a match between rapid automatic multimodal binding of phonology output and SLTM/ELTM representations, language processing continues rapidly and implicitly. Method and Results In our first ELU approach, we focused on experimental manipulations of signal processing in hearing aids and background noise to cause a mismatch with LTM representations; both resulted in increased dependence on WM. Our second—and main approach relevant for this review article—focuses on the relative effects of age-related hearing loss on the three memory systems. According to the ELU, WM is predicted to be frequently occupied with reconstruction of what was actually heard, resulting in a relative disuse of phonological/lexical representations in the ELTM and SLTM systems. The prediction and results do not depend on test modality per se but rather on the particular memory system. This will be further discussed. Conclusions Related to the literature on ELTM decline as precursors of dementia and the fact that the risk for Alzheimer's disease increases substantially over time due to hearing loss, there is a possibility that lowered ELTM due to hearing loss and disuse may be part of the causal chain linking hearing loss and dementia. Future ELU research will focus on this possibility.


2020 ◽  
Author(s):  
Timothy F. Brady ◽  
Viola S. Störmer ◽  
George Alvarez

Visual working memory is the cognitive system that holds visual information active to make it resistant to interference from new perceptual input. Information about simple stimuli – colors, orientations – is encoded into working memory rapidly: in under 100ms, working memory ‘fills up’, revealing a stark capacity limit. However, for real-world objects, the same behavioral limits do not hold: with increasing encoding time, people store more real-world objects and do so with more detail. This boost in performance for real-world objects is generally assumed to reflect the use of a separate episodic long-term memory system, rather than working memory. Here we show that this behavioral increase in capacity with real-world objects is not solely due to the use of separate episodic long-term memory systems. In particular, we show that this increase is a result of active storage in working memory, as shown by directly measuring neural activity during the delay period of a working memory task using EEG. These data challenge fixed capacity working memory models, and demonstrate that working memory and its capacity limitations are dependent upon our existing knowledge.


Sign in / Sign up

Export Citation Format

Share Document