scholarly journals Determination of High Temperature Deformation Mechanism in Solution-Hardened Alloys by Electric Resistivity Measurement

1995 ◽  
Vol 59 (2) ◽  
pp. 152-155
Author(s):  
Tatsuya Morikawa ◽  
Hideaki Takemori ◽  
Hideharu Nakashima ◽  
Hideo Yoshinaga
2015 ◽  
Vol 466 ◽  
pp. 653-657 ◽  
Author(s):  
Yoshito Sugino ◽  
Shigeharu Ukai ◽  
Naoko Oono ◽  
Shigenari Hayashi ◽  
Takeji Kaito ◽  
...  

2004 ◽  
Vol 449-452 ◽  
pp. 57-60
Author(s):  
I.G. Lee ◽  
A.K. Ghosh

In order to analyze high temperature deformation behavior of NiAl alloys, deformation maps were constructed for stoichiometric NiAl materials with grain sizes of 4 and 200 µm. Relevant constitute equations and calculation method will be described in this paper. These maps are particularly useful in identifying the location of testing domains, such as creep and tensile tests, in relation to the stress-temperature-strain rate domains experienced by NiAl.


2016 ◽  
Vol 723 ◽  
pp. 21-26
Author(s):  
Tsutomu Ito ◽  
Takashi Mizuguchi

In this study, the superplastic behavior on a fine-grained aluminum solid solution alloy consisting of thermally unstable microstructures was investigated. In order to obtain the fine-grained microstructure, friction stir processing (FSP) was applied to a commercial 5083 aluminum alloy. An equiaxial fine-grained microstructure of 7.8 mm was obtained after FSP, but this microstructure was thermally unstable at high temperatures. Commonly, for fine-grained superplasticity to occur (or to continue grain boundary sliding (GBS)), it is necessary to keep the fine-grained microstructure to less than 10 mm during the high-temperature deformation. However, in this study, a large elongation of over 200% was observed at high temperatures in spite of the occurrence of grain growth. From the microstructural observations, it was determined that the fine-grained microstructure was maintained until the early stage of deformation, but the transgranular deformation was observed at a strain of over 100%. The microstructural feature of the abovementioned transgranular deformation is similar to the deformation microstructure of the solute drag creep occurring in "Class I"-type solid solution alloys. This indicates that the deformation mechanism transition from GBS to the solute drag creep occurred during high-temperature deformation. Here, the possibility of occurrence of the superplastic elongation through deformation mechanism transition is discussed as a model of the thermally unstable aluminum solid solution alloy.


1989 ◽  
Vol 37 (2) ◽  
pp. 499-505 ◽  
Author(s):  
H. Kurishita ◽  
H. Yoshinaga ◽  
H. Nakashima

1996 ◽  
Vol 11 (6) ◽  
pp. 1433-1439 ◽  
Author(s):  
Anne Vilette ◽  
S. L. Kampe

Cubic (δ) bismuth oxide (Bi2O3) has been subjected to high temperature deformation over a wide range of temperatures and strain rates. Results indicate that bismuth oxide is essentially incapable of plastic deformation at temperatures below the monoclithic to cubic phase transformation which occurs at approximately 730 °C. Above the transformation temperature, however, Bi2O3 is extensively deformable. The variability of flow stress to temperature and strain rate has been quantified through the determination of phenomenological-based constitutive equations to describe its behavior at these high temperatures. Analysis of the so-determined deformation constants indicate an extremely strong sensitivity to strain rate and temperature, with values of the strain-rate sensitivity approaching values commonly cited as indicative of superplastic behavior.


Sign in / Sign up

Export Citation Format

Share Document