scholarly journals Influence of Interfacial Reaction on Wear Resistance of Aluminum Alloy/SiC Composites Fabricated by Low Pressure Infiltration Process

2015 ◽  
Vol 56 (7) ◽  
pp. 1081-1086
Author(s):  
Tong Wang ◽  
Masataka Yamamoto ◽  
Akio Kagawa
1999 ◽  
Vol 14 (11) ◽  
pp. 4239-4245 ◽  
Author(s):  
Mario Aparicio ◽  
Alicia Durán

An infiltration process that uses silica sol-gel solutions was developed to protect C/SiC composites against oxidation. The infiltration is assisted using isostatic pressure. Different process parameters including substrate porosity and solution concentration and viscosity were varied to optimize the infiltration effectiveness. Applied pressure enhances penetration of solutions, reducing the importance of viscosity, an important process variable for dipping infiltration. The effectiveness of the isostatic pressure infiltration method, evaluated through the total weight gains and pore-size distribution of infiltrated samples, is compared with results of dipping infiltration. The oxidation behavior of the infiltrated samples, was evaluated by stepwise oxidation test as well as isothermal tests at 1200 and 1600 °C. The infiltrated SiO2 protects the C/SiC substrate, reducing the burnoff rate of C fibers at low temperature and delaying the oxidation of SiC.


2005 ◽  
Vol 475-479 ◽  
pp. 913-916
Author(s):  
Fa Zhang Yin ◽  
Cheng Chang Jia ◽  
Xuezhen Mei ◽  
Bin Ye ◽  
Yanlei Ping ◽  
...  

The SiCp performing sample was made first then Al/SiCp (65%) was manufactured. Appropriate component and proportion of binder and process parameters were selected to control the porosity. Debinding has succeeded by extractive and thermal debinding processes. SiCp preforming samples with good appearance, enough strength, and right porosity were obtained by pre-sintering process at 1100°C. Composites with high density and homogeneous microstructure were manufactured by pressure infiltration under 1050°C and 15MPa. The distribution of aluminium and silicon elements was homogeneous. The primary components of materials are aluminium, β-SiC and α-SiC. The thermal expand coefficient of composites is 8.0×10-6/°C at room temperature, which increases with temperature and reaches to 11.0×10-6/°C at 300°C. The density is 2.92g/cm3, and relative density is more than 97 %. The strength is about 500MPa, approaching to the upper limit of the theoretical value.


2005 ◽  
pp. 913-916
Author(s):  
Fa Zhang Yin ◽  
Cheng Chang Jia ◽  
Xuezhen Mei ◽  
Bin Ye ◽  
Yanlei Ping ◽  
...  

Author(s):  
Gen Sasaki ◽  
Yong Bum Choi ◽  
Kazuhiro Matsugi ◽  
Naoki Sorita ◽  
Shunsaku Kondoh ◽  
...  

2012 ◽  
Vol 2012.20 (0) ◽  
pp. _114-1_-_114-4_
Author(s):  
Moonhee LEE ◽  
Yongbum CHOI ◽  
Kenjiro SUGIO ◽  
Kazuhiro MATSUGI ◽  
Gen SASAKI

Sign in / Sign up

Export Citation Format

Share Document