scholarly journals Nanomaterials for Organic Optoelectronic Devices: Organic Light-Emitting Diodes, Organics Solar Cells and Organic Gas Sensors

2020 ◽  
Vol 61 (8) ◽  
pp. 1422-1429
Author(s):  
Nguyen Nang Dinh ◽  
Tran Si Trong Khanh ◽  
Lam Minh Long ◽  
Nguyen Duc Cuong ◽  
Nguyen Phuong Hoai Nam
2021 ◽  
Vol 314 ◽  
pp. 3-8
Author(s):  
Noel Giebink

Organic optoelectronic devices such as light-emitting diodes and solar cells present unique challenges for surface cleaning and preparation because of their large area and the ‘soft’, thin film nature of the materials involved. This paper gives an introduction to this class of semiconductor devices and covers a recent example of how surface cleaning impacts the long-term reliability of organic light-emitting diodes being commercialized for solid-state lighting.


2021 ◽  
Author(s):  
Yuxin GUAN ◽  
Wenjing LIN ◽  
Qiannan WANG ◽  
Pengchao ZHOU ◽  
Bin WEI ◽  
...  

The appropriate hosts of emitting layers (EMLs) play an important role in determining the overall performance of solution-processed phosphorescent organic light emitting diodes (PhOLEDs). We have investigated the effect of three species of host molecules, 1,3-bis(carbazol-9-yl)benzene (mCP), 10-(4-(5,5dimethylbenzofuro[3,2-c]acridin-13(5H)-yl)phenyl)-10-phenylanthracen-9(10H)-one (DpAn-5BzAc) and poly(9-vinylcarbazole) (PVK), on the performance of solution-processed blue and yellow PhOLEDs. We have found that compared to the widely used single-host EMLs, the devices using the binary blend of mCP: DpAn5BzAc as hosts, can achieve more efficient optoelectrical characteristics. The maximum current efficiencies of 11.84 and 16.61 have been realized for blue and yellow OLEDs, respectively. The superior electroluminescence performance for binary blend host-based PhOLEDs was attributed to the enhanced charge carrier balance and multi-component miscibility, which has a dramatic influence on the morphology of the emissive layer. These results demonstrate the great potential of the multi-hosts in solution-processed organic optoelectronic devices. The development of complementary colour OLEDs with blue and yellow can provide a simple approach to fabricate solution-processed white PhOLEDs.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Soyeon Kim ◽  
Adi Prasetio ◽  
Joo Won Han ◽  
Yongki Kim ◽  
Myunghun Shin ◽  
...  

AbstractSolution-processed flexible organic optoelectronic devices have great potential as low-cost organic photovoltaics for energy harvesting, and in organic light-emitting diodes as a lighting source. However, a major challenge for improving device performance and stability is the different interfacial characteristics of the hydrophobic organic layers and hydrophilic transparent electrodes, particularly for flexible devices. Surface wetting controlled interfacial engineering can provide a useful method to develop highly efficient flexible organic devices. Here, an unsaturated fatty acid-modified ethoxylated polyethyleneimine organic interfacial layer is designed, which is hydrophobic or hydrophilic on different interfaces. This interlayer results in a power conversion efficiency of 10.57% for rigid and 9.04% for flexible photovoltaic devices. Furthermore, the long-term air storage stability for 250 h is substantially improved, retaining 87.75% efficiency without encapsulation, due to the wettability driven improvement of the optical and electronic properties of the cathode interfacial layer. The performance of organic light emitting diodes also benefitted from the interlayer. This study provides a strategy to simultaneously improve efficiency and stability by controlling the wettability of the interfacial layer.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Nguyen Nang Dinh ◽  
Do Ngoc Chung ◽  
Tran Thi Thao ◽  
David Hui

Polymeric nanocomposite films from PEDOT and MEH-PPV embedded with surface modified TiO2nanoparticles for the hole transport layer and emission layer were prepared, respectively, for organic emitting diodes (OLEDs). The composite of MEH-PPV+nc-TiO2was used for organic solar cells (OSCs). The characterization of these nanocomposites and devices showed that electrical (I-Vcharacteristics) and spectroscopic (photoluminescent) properties of conjugate polymers were enhanced by the incorporation of nc-TiO2in the polymers. The organic light emitting diodes made from the nanocomposite films would exhibit a larger photonic efficiency and a longer lasting life. For the organic solar cells made from MEH-PPV+nc-TiO2composite, a fill factor reached a value of about 0.34. Under illumination by light with a power density of 50 mW/cm2, the photoelectrical conversion efficiency was about 0.15% corresponding to an open circuit voltageVoc= 0.126 V and a shortcut circuit current densityJsc= 1.18 mA/cm2.


2012 ◽  
Vol 9 (5) ◽  
pp. 399-406
Author(s):  
Do Chung ◽  
Nguyen Dinh ◽  
Tran Thao ◽  
Nguyen Nam ◽  
Tran Trung ◽  
...  

Polymeric nanocomposite films from PEDOT and MEH-PPV embedded with surface modified TiO2 nanoparticles were prepared, respectively for the hole transport layer (HTL) and emission layer (EL) in Organic Light Emitting Diodes (OLED). The composite of MEH-PPV + nc-TiO2 was used for Organic Solar Cells (OCS). The results from the characterization of the properties of the nanocomposites and devices showed that electrical (I-V characteristics) and spectroscopic (photoluminescent) properties of the conjugate polymers were enhanced due to the incorporation of nc-TiO2 in the polymers. The OLEDs made from the nanocomposite films would exhibit a larger photonic efficiency and a longer lasting life. For the OSC made from MEH-PPV + nc-TiO2 composite, the fill factor (FF) reached a value as high as 0.34. Under illumination of light with a power density of 50 mW/cm2, the photoelectrical conversion efficiency (PEC) was found to be of 0.15% corresponding to an open circuit voltage VOC = 1.15 V and a short-cut circuit current density JSC = 0.125 mA/cm2.


2018 ◽  
Vol 6 (33) ◽  
pp. 9017-9029 ◽  
Author(s):  
Hong Duc Pham ◽  
Hongwei Hu ◽  
Fu-Lung Wong ◽  
Chun-Sing Lee ◽  
Wen-Cheng Chen ◽  
...  

A series of strong electron-rich small molecules based on acenes were designed and synthesized for application in green/blue organic light-emitting diodes and perovskite solar cells.


Sign in / Sign up

Export Citation Format

Share Document